Polynomial effective equidistribution

We prove effective equidistribution theorems, with polynomial error rate, for orbits of the unipotent subgroups of $\mathrm{SL}_2(\mathfrak{l})$ in arithmetic quotients of $\mathrm{SL}_2(\mathbb{C})$ and $\mathrm{SL}_2(\mathfrak{l})\times \mathrm{SL}_2(\mathfrak{l})$.The proof is based on the use of...

Full description

Saved in:
Bibliographic Details
Main Authors: Lindenstrauss, Elon, Mohammadi, Amir, Wang, Zhiren
Format: Article
Language:English
Published: Académie des sciences 2023-02-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.411/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206211913449472
author Lindenstrauss, Elon
Mohammadi, Amir
Wang, Zhiren
author_facet Lindenstrauss, Elon
Mohammadi, Amir
Wang, Zhiren
author_sort Lindenstrauss, Elon
collection DOAJ
description We prove effective equidistribution theorems, with polynomial error rate, for orbits of the unipotent subgroups of $\mathrm{SL}_2(\mathfrak{l})$ in arithmetic quotients of $\mathrm{SL}_2(\mathbb{C})$ and $\mathrm{SL}_2(\mathfrak{l})\times \mathrm{SL}_2(\mathfrak{l})$.The proof is based on the use of a Margulis function, tools from incidence geometry, and the spectral gap of the ambient space.
format Article
id doaj-art-20061efc74ab494b8a96dfae2809a9e1
institution Kabale University
issn 1778-3569
language English
publishDate 2023-02-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-20061efc74ab494b8a96dfae2809a9e12025-02-07T11:06:36ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-02-01361G250752010.5802/crmath.41110.5802/crmath.411Polynomial effective equidistributionLindenstrauss, Elon0Mohammadi, Amir1Wang, Zhiren2The Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, IsraelDepartment of Mathematics, University of California, San Diego, CA 92093, USAPennsylvania State University, Department of Mathematics, University Park, PA 16802, USAWe prove effective equidistribution theorems, with polynomial error rate, for orbits of the unipotent subgroups of $\mathrm{SL}_2(\mathfrak{l})$ in arithmetic quotients of $\mathrm{SL}_2(\mathbb{C})$ and $\mathrm{SL}_2(\mathfrak{l})\times \mathrm{SL}_2(\mathfrak{l})$.The proof is based on the use of a Margulis function, tools from incidence geometry, and the spectral gap of the ambient space.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.411/
spellingShingle Lindenstrauss, Elon
Mohammadi, Amir
Wang, Zhiren
Polynomial effective equidistribution
Comptes Rendus. Mathématique
title Polynomial effective equidistribution
title_full Polynomial effective equidistribution
title_fullStr Polynomial effective equidistribution
title_full_unstemmed Polynomial effective equidistribution
title_short Polynomial effective equidistribution
title_sort polynomial effective equidistribution
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.411/
work_keys_str_mv AT lindenstrausselon polynomialeffectiveequidistribution
AT mohammadiamir polynomialeffectiveequidistribution
AT wangzhiren polynomialeffectiveequidistribution