Simplified Fuzzy Control for Flux-Weakening Speed Control of IPMSM Drive
This paper presents a simplified fuzzy logic-based speed control scheme of an interior permanent magnet synchronous motor (IPMSM) above the base speed using a flux-weakening method. In this work, nonlinear expressions of d-axis and q-axis currents of the IPMSM have been derived and subsequently inco...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2011-01-01
|
| Series: | Advances in Fuzzy Systems |
| Online Access: | http://dx.doi.org/10.1155/2011/354980 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents a simplified fuzzy logic-based speed control scheme of an interior permanent magnet synchronous motor (IPMSM) above the base speed using a flux-weakening method. In this work, nonlinear expressions of d-axis and q-axis currents of the IPMSM have been derived and subsequently incorporated in the control algorithm for the practical purpose in order to implement fuzzy-based flux-weakening strategy to operate the motor above the base speed. The fundamentals of fuzzy logic algorithms as related to motor control applications are also illustrated. A simplified fuzzy speed controller (FLC) for the IPMSM drive has been designed and incorporated in the drive system to maintain high performance standards. The efficacy of the proposed simplified FLC-based IPMSM drive is verified by simulation at various dynamic operating conditions. The simplified FLC is found to be robust and efficient. Laboratory test results of proportional integral (PI) controller-based IPMSM drive have been compared with the simulated results of fuzzy controller-based flux-weakening IPMSM drive system. |
|---|---|
| ISSN: | 1687-7101 1687-711X |