On a criterion of Yakubovich type for the absolute stability of nonautonomous control processes
We generalize a criterion of Yakubovich for the absolute stability of control processes with periodic coefficients to the case when the coefficients are bounded and uniformly continuous functions.
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2003-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/S0161171203201095 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832563756401426432 |
---|---|
author | R. Fabbri S. T. Impram R. Johnson |
author_facet | R. Fabbri S. T. Impram R. Johnson |
author_sort | R. Fabbri |
collection | DOAJ |
description | We generalize a criterion of Yakubovich for the absolute
stability of control processes with periodic coefficients to the
case when the coefficients are bounded and uniformly continuous
functions. |
format | Article |
id | doaj-art-1fab1d17e8534685b6ca1f44d3069b95 |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 2003-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-1fab1d17e8534685b6ca1f44d3069b952025-02-03T01:12:32ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252003-01-012003161027104110.1155/S0161171203201095On a criterion of Yakubovich type for the absolute stability of nonautonomous control processesR. Fabbri0S. T. Impram1R. Johnson2Dipartimento di Sistemi e Informatica, Università di Firenze, Via di Santa Marta 3, Firenze 50139, ItalyDipartimento di Sistemi e Informatica, Università di Firenze, Via di Santa Marta 3, Firenze 50139, ItalyDipartimento di Sistemi e Informatica, Università di Firenze, Via di Santa Marta 3, Firenze 50139, ItalyWe generalize a criterion of Yakubovich for the absolute stability of control processes with periodic coefficients to the case when the coefficients are bounded and uniformly continuous functions.http://dx.doi.org/10.1155/S0161171203201095 |
spellingShingle | R. Fabbri S. T. Impram R. Johnson On a criterion of Yakubovich type for the absolute stability of nonautonomous control processes International Journal of Mathematics and Mathematical Sciences |
title | On a criterion of Yakubovich type for the absolute stability of nonautonomous control processes |
title_full | On a criterion of Yakubovich type for the absolute stability of nonautonomous control processes |
title_fullStr | On a criterion of Yakubovich type for the absolute stability of nonautonomous control processes |
title_full_unstemmed | On a criterion of Yakubovich type for the absolute stability of nonautonomous control processes |
title_short | On a criterion of Yakubovich type for the absolute stability of nonautonomous control processes |
title_sort | on a criterion of yakubovich type for the absolute stability of nonautonomous control processes |
url | http://dx.doi.org/10.1155/S0161171203201095 |
work_keys_str_mv | AT rfabbri onacriterionofyakubovichtypefortheabsolutestabilityofnonautonomouscontrolprocesses AT stimpram onacriterionofyakubovichtypefortheabsolutestabilityofnonautonomouscontrolprocesses AT rjohnson onacriterionofyakubovichtypefortheabsolutestabilityofnonautonomouscontrolprocesses |