A diffusion MRI model for random walks confined on cylindrical surfaces: towards non-invasive quantification of myelin sheath radius

IntroductionQuantifying the myelin sheath radius of myelinated axons in vivo is important for understanding, diagnosing, and monitoring various neurological disorders. Despite advancements in diffusion MRI (dMRI) microstructure techniques, there are currently no models specifically designed to estim...

Full description

Saved in:
Bibliographic Details
Main Authors: Erick J. Canales-Rodríguez, Chantal M. W. Tax, Elda Fischi-Gomez, Derek K. Jones, Jean-Philippe Thiran, Jonathan Rafael-Patiño
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-03-01
Series:Frontiers in Physics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphy.2025.1516630/full
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849706085373444096
author Erick J. Canales-Rodríguez
Erick J. Canales-Rodríguez
Erick J. Canales-Rodríguez
Chantal M. W. Tax
Chantal M. W. Tax
Elda Fischi-Gomez
Elda Fischi-Gomez
Elda Fischi-Gomez
Derek K. Jones
Jean-Philippe Thiran
Jean-Philippe Thiran
Jean-Philippe Thiran
Jonathan Rafael-Patiño
Jonathan Rafael-Patiño
author_facet Erick J. Canales-Rodríguez
Erick J. Canales-Rodríguez
Erick J. Canales-Rodríguez
Chantal M. W. Tax
Chantal M. W. Tax
Elda Fischi-Gomez
Elda Fischi-Gomez
Elda Fischi-Gomez
Derek K. Jones
Jean-Philippe Thiran
Jean-Philippe Thiran
Jean-Philippe Thiran
Jonathan Rafael-Patiño
Jonathan Rafael-Patiño
author_sort Erick J. Canales-Rodríguez
collection DOAJ
description IntroductionQuantifying the myelin sheath radius of myelinated axons in vivo is important for understanding, diagnosing, and monitoring various neurological disorders. Despite advancements in diffusion MRI (dMRI) microstructure techniques, there are currently no models specifically designed to estimate myelin sheath radii.MethodsThis proof-of-concept theoretical study presents two novel dMRI models that characterize the signal from water diffusion confined to cylindrical surfaces, approximating myelin water diffusion. We derive their spherical mean signals, eliminating fiber orientation and dispersion effects for convenience. These models are further extended to account for multiple concentric cylinders, mimicking the layered structure of myelin. Additionally, we introduce a method to convert histological distributions of axonal inner radii from the literature into myelin sheath radius distributions. We also derive analytical expressions to estimate the effective myelin sheath radius expected from these distributions.Results and DiscussionMonte Carlo (MC) simulations conducted in cylindrical and spiral geometries validate the models. These simulations demonstrate agreement with analytical predictions. Furthermore, we observe significant correlations between the effective radii derived from histological distributions and those obtained by fitting the dMRI signal to a single-cylinder model. These models may be integrated with existing multi-compartment dMRI techniques, opening the door to non-invasive in vivo assessments of myelin sheath radii. Such assessments would require MRI scanners equipped with strong diffusion gradients, allowing measurements with short echo times. Further work is required to validate the technique with real dMRI data and histological measurements.
format Article
id doaj-art-1fa894a6abea43e9953702845e8cfa39
institution DOAJ
issn 2296-424X
language English
publishDate 2025-03-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Physics
spelling doaj-art-1fa894a6abea43e9953702845e8cfa392025-08-20T03:16:18ZengFrontiers Media S.A.Frontiers in Physics2296-424X2025-03-011310.3389/fphy.2025.15166301516630A diffusion MRI model for random walks confined on cylindrical surfaces: towards non-invasive quantification of myelin sheath radiusErick J. Canales-Rodríguez0Erick J. Canales-Rodríguez1Erick J. Canales-Rodríguez2Chantal M. W. Tax3Chantal M. W. Tax4Elda Fischi-Gomez5Elda Fischi-Gomez6Elda Fischi-Gomez7Derek K. Jones8Jean-Philippe Thiran9Jean-Philippe Thiran10Jean-Philippe Thiran11Jonathan Rafael-Patiño12Jonathan Rafael-Patiño13Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, SwitzerlandComputational Medical Imaging and Machine Learning Section, Center for Biomedical Imaging (CIBM), Lausanne, SwitzerlandSignal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SwitzerlandImage Sciences Institute, University Medical Center Utrecht, Utrecht, NetherlandsCardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United KingdomDepartment of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, SwitzerlandComputational Medical Imaging and Machine Learning Section, Center for Biomedical Imaging (CIBM), Lausanne, SwitzerlandSignal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SwitzerlandCardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United KingdomDepartment of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, SwitzerlandComputational Medical Imaging and Machine Learning Section, Center for Biomedical Imaging (CIBM), Lausanne, SwitzerlandSignal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SwitzerlandDepartment of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, SwitzerlandSignal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SwitzerlandIntroductionQuantifying the myelin sheath radius of myelinated axons in vivo is important for understanding, diagnosing, and monitoring various neurological disorders. Despite advancements in diffusion MRI (dMRI) microstructure techniques, there are currently no models specifically designed to estimate myelin sheath radii.MethodsThis proof-of-concept theoretical study presents two novel dMRI models that characterize the signal from water diffusion confined to cylindrical surfaces, approximating myelin water diffusion. We derive their spherical mean signals, eliminating fiber orientation and dispersion effects for convenience. These models are further extended to account for multiple concentric cylinders, mimicking the layered structure of myelin. Additionally, we introduce a method to convert histological distributions of axonal inner radii from the literature into myelin sheath radius distributions. We also derive analytical expressions to estimate the effective myelin sheath radius expected from these distributions.Results and DiscussionMonte Carlo (MC) simulations conducted in cylindrical and spiral geometries validate the models. These simulations demonstrate agreement with analytical predictions. Furthermore, we observe significant correlations between the effective radii derived from histological distributions and those obtained by fitting the dMRI signal to a single-cylinder model. These models may be integrated with existing multi-compartment dMRI techniques, opening the door to non-invasive in vivo assessments of myelin sheath radii. Such assessments would require MRI scanners equipped with strong diffusion gradients, allowing measurements with short echo times. Further work is required to validate the technique with real dMRI data and histological measurements.https://www.frontiersin.org/articles/10.3389/fphy.2025.1516630/fulldiffusion MRImyelin waterMonte Carlo simulationswhite matter microstructuremyelin sheath radius
spellingShingle Erick J. Canales-Rodríguez
Erick J. Canales-Rodríguez
Erick J. Canales-Rodríguez
Chantal M. W. Tax
Chantal M. W. Tax
Elda Fischi-Gomez
Elda Fischi-Gomez
Elda Fischi-Gomez
Derek K. Jones
Jean-Philippe Thiran
Jean-Philippe Thiran
Jean-Philippe Thiran
Jonathan Rafael-Patiño
Jonathan Rafael-Patiño
A diffusion MRI model for random walks confined on cylindrical surfaces: towards non-invasive quantification of myelin sheath radius
Frontiers in Physics
diffusion MRI
myelin water
Monte Carlo simulations
white matter microstructure
myelin sheath radius
title A diffusion MRI model for random walks confined on cylindrical surfaces: towards non-invasive quantification of myelin sheath radius
title_full A diffusion MRI model for random walks confined on cylindrical surfaces: towards non-invasive quantification of myelin sheath radius
title_fullStr A diffusion MRI model for random walks confined on cylindrical surfaces: towards non-invasive quantification of myelin sheath radius
title_full_unstemmed A diffusion MRI model for random walks confined on cylindrical surfaces: towards non-invasive quantification of myelin sheath radius
title_short A diffusion MRI model for random walks confined on cylindrical surfaces: towards non-invasive quantification of myelin sheath radius
title_sort diffusion mri model for random walks confined on cylindrical surfaces towards non invasive quantification of myelin sheath radius
topic diffusion MRI
myelin water
Monte Carlo simulations
white matter microstructure
myelin sheath radius
url https://www.frontiersin.org/articles/10.3389/fphy.2025.1516630/full
work_keys_str_mv AT erickjcanalesrodriguez adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT erickjcanalesrodriguez adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT erickjcanalesrodriguez adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT chantalmwtax adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT chantalmwtax adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT eldafischigomez adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT eldafischigomez adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT eldafischigomez adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT derekkjones adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT jeanphilippethiran adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT jeanphilippethiran adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT jeanphilippethiran adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT jonathanrafaelpatino adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT jonathanrafaelpatino adiffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT erickjcanalesrodriguez diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT erickjcanalesrodriguez diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT erickjcanalesrodriguez diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT chantalmwtax diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT chantalmwtax diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT eldafischigomez diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT eldafischigomez diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT eldafischigomez diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT derekkjones diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT jeanphilippethiran diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT jeanphilippethiran diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT jeanphilippethiran diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT jonathanrafaelpatino diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius
AT jonathanrafaelpatino diffusionmrimodelforrandomwalksconfinedoncylindricalsurfacestowardsnoninvasivequantificationofmyelinsheathradius