Wind Power Short-Term Prediction Method Based on Time-Domain Dual-Channel Adaptive Learning Model

Driven by dual carbon targets, the scale of wind power integration has surged dramatically. However, its strong volatility causes insufficient short-term prediction accuracy, severely constraining grid security and economic dispatch. To address three key challenges in extracting temporal characteris...

Full description

Saved in:
Bibliographic Details
Main Authors: Haotian Guo, Keng-Weng Lao, Junkun Hao, Xiaorui Hu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/14/3722
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Driven by dual carbon targets, the scale of wind power integration has surged dramatically. However, its strong volatility causes insufficient short-term prediction accuracy, severely constraining grid security and economic dispatch. To address three key challenges in extracting temporal characteristics of strong volatility, adaptive fusion of multi-source features, and enhancing model interpretability, this paper proposes a Time-Domain Dual-Channel Adaptive Learning Model (TDDCALM). The model employs dual-channel feature decoupling: one Transformer encoder layer captures global dependencies while the raw state layer preserves local temporal features. After TCN-based feature compression, an adaptive weighted early fusion mechanism dynamically optimizes channel weights. The ACON adaptive activation function autonomously learns optimal activation patterns, with fused features visualized through visualization techniques. Validation on two wind farm datasets (A/B) demonstrates that the proposed method reduces RMSE by at least 8.89% compared to the best deep learning baseline, exhibits low sensitivity to time window sizes, and establishes a novel paradigm for forecasting highly volatile renewable energy power.
ISSN:1996-1073