Analysis and Assessment of a Brushless DC Outrunner Motor for Agriculture Drones Using JMAG

Designing propulsion systems for agricultural drones involves a repetitive process that is both expensive and time-intensive. At the same time, conducting comprehensive experimental tests demands specialized equipment and strict safety protocols. In this work, the design and assessment of the propul...

Full description

Saved in:
Bibliographic Details
Main Authors: Javier de la Cruz Soto, Jose J. Gascon-Avalos, Jesse Y. Rumbo-Morales, Gerardo Ortiz-Torres, Manuel A. Zurita-Gil, Felipe D. J. Sorcia-Vázquez, Javier Pérez-Ramírez, Obed A. Valle-López, Susana E. Garcia-Castro, Hector M. Buenabad-Arias, Moises Ramos-Martinez, Maria A. López-Osorio
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied System Innovation
Subjects:
Online Access:https://www.mdpi.com/2571-5577/8/3/81
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849432849669685248
author Javier de la Cruz Soto
Jose J. Gascon-Avalos
Jesse Y. Rumbo-Morales
Gerardo Ortiz-Torres
Manuel A. Zurita-Gil
Felipe D. J. Sorcia-Vázquez
Javier Pérez-Ramírez
Obed A. Valle-López
Susana E. Garcia-Castro
Hector M. Buenabad-Arias
Moises Ramos-Martinez
Maria A. López-Osorio
author_facet Javier de la Cruz Soto
Jose J. Gascon-Avalos
Jesse Y. Rumbo-Morales
Gerardo Ortiz-Torres
Manuel A. Zurita-Gil
Felipe D. J. Sorcia-Vázquez
Javier Pérez-Ramírez
Obed A. Valle-López
Susana E. Garcia-Castro
Hector M. Buenabad-Arias
Moises Ramos-Martinez
Maria A. López-Osorio
author_sort Javier de la Cruz Soto
collection DOAJ
description Designing propulsion systems for agricultural drones involves a repetitive process that is both expensive and time-intensive. At the same time, conducting comprehensive experimental tests demands specialized equipment and strict safety protocols. In this work, the design and assessment of the propulsion system (propeller, motor, and battery) for large-sized drones in agricultural applications are conducted using numerical methods. To properly predict and validate the performance of a brushless direct current motor, a three half-bridge inverter circuit, featuring a trapezoidal commutation, is implemented and constructed. First, the propeller is studied using the finite volume method, obtaining a maximum variation of 6.32% for thrust and 10.1% for torque. Additionally, an electromagnetic analysis on a commercial brushless direct current motor (BLDC) using JMAG software from JSOL corporation (JMAG designer 23.2, Cd.Obregón, México) resulted in 4.43% deviation from experimental electrical measurements. The selected propulsion system is implemented in a 30 kg drone, where motor performance is evaluated for two instants of time in a typical agriculture trajectory. The findings demonstrate that numerical methods provide valuable insights in large-sized unmanned aerial vehicle (UAV) design, decreasing the experimental tests conducted and accelerating implementation time.
format Article
id doaj-art-1f6fd33f52e34820b4c2fa119d4c2a93
institution Kabale University
issn 2571-5577
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Applied System Innovation
spelling doaj-art-1f6fd33f52e34820b4c2fa119d4c2a932025-08-20T03:27:15ZengMDPI AGApplied System Innovation2571-55772025-06-01838110.3390/asi8030081Analysis and Assessment of a Brushless DC Outrunner Motor for Agriculture Drones Using JMAGJavier de la Cruz Soto0Jose J. Gascon-Avalos1Jesse Y. Rumbo-Morales2Gerardo Ortiz-Torres3Manuel A. Zurita-Gil4Felipe D. J. Sorcia-Vázquez5Javier Pérez-Ramírez6Obed A. Valle-López7Susana E. Garcia-Castro8Hector M. Buenabad-Arias9Moises Ramos-Martinez10Maria A. López-Osorio11CONAHCYT-Sonora Institute of Technology, Obregon City 85130, MexicoCentro Universitario de los Valles, University of Guadalajara, Carretera Guadalajara-Ameca, Km. 45.5, Ameca 46600, MexicoCentro Universitario de los Valles, University of Guadalajara, Carretera Guadalajara-Ameca, Km. 45.5, Ameca 46600, MexicoCentro Universitario de los Valles, University of Guadalajara, Carretera Guadalajara-Ameca, Km. 45.5, Ameca 46600, MexicoCentro Universitario de los Valles, University of Guadalajara, Carretera Guadalajara-Ameca, Km. 45.5, Ameca 46600, MexicoCentro Universitario de los Valles, University of Guadalajara, Carretera Guadalajara-Ameca, Km. 45.5, Ameca 46600, MexicoDepartamento de Ingeniería eléCtrica y Electrónica, Sonora Institute of Technology, Obregon City 85130, MexicoDepartamento de Ingeniería eléCtrica y Electrónica, Sonora Institute of Technology, Obregon City 85130, MexicoDepartamento de Metal Mecánica, Tecnológico Nacional de México, Campus Hermosillo, Hermosillo 85130, MexicoCentro de Investigación en Ingenierías y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, MexicoCentro Universitario de los Valles, University of Guadalajara, Carretera Guadalajara-Ameca, Km. 45.5, Ameca 46600, MexicoNatural and Exact Sciences Department, University of Guadalajara, Ameca 46600, MexicoDesigning propulsion systems for agricultural drones involves a repetitive process that is both expensive and time-intensive. At the same time, conducting comprehensive experimental tests demands specialized equipment and strict safety protocols. In this work, the design and assessment of the propulsion system (propeller, motor, and battery) for large-sized drones in agricultural applications are conducted using numerical methods. To properly predict and validate the performance of a brushless direct current motor, a three half-bridge inverter circuit, featuring a trapezoidal commutation, is implemented and constructed. First, the propeller is studied using the finite volume method, obtaining a maximum variation of 6.32% for thrust and 10.1% for torque. Additionally, an electromagnetic analysis on a commercial brushless direct current motor (BLDC) using JMAG software from JSOL corporation (JMAG designer 23.2, Cd.Obregón, México) resulted in 4.43% deviation from experimental electrical measurements. The selected propulsion system is implemented in a 30 kg drone, where motor performance is evaluated for two instants of time in a typical agriculture trajectory. The findings demonstrate that numerical methods provide valuable insights in large-sized unmanned aerial vehicle (UAV) design, decreasing the experimental tests conducted and accelerating implementation time.https://www.mdpi.com/2571-5577/8/3/81BLDCJMAGCFDpower electronicsagriculture applications
spellingShingle Javier de la Cruz Soto
Jose J. Gascon-Avalos
Jesse Y. Rumbo-Morales
Gerardo Ortiz-Torres
Manuel A. Zurita-Gil
Felipe D. J. Sorcia-Vázquez
Javier Pérez-Ramírez
Obed A. Valle-López
Susana E. Garcia-Castro
Hector M. Buenabad-Arias
Moises Ramos-Martinez
Maria A. López-Osorio
Analysis and Assessment of a Brushless DC Outrunner Motor for Agriculture Drones Using JMAG
Applied System Innovation
BLDC
JMAG
CFD
power electronics
agriculture applications
title Analysis and Assessment of a Brushless DC Outrunner Motor for Agriculture Drones Using JMAG
title_full Analysis and Assessment of a Brushless DC Outrunner Motor for Agriculture Drones Using JMAG
title_fullStr Analysis and Assessment of a Brushless DC Outrunner Motor for Agriculture Drones Using JMAG
title_full_unstemmed Analysis and Assessment of a Brushless DC Outrunner Motor for Agriculture Drones Using JMAG
title_short Analysis and Assessment of a Brushless DC Outrunner Motor for Agriculture Drones Using JMAG
title_sort analysis and assessment of a brushless dc outrunner motor for agriculture drones using jmag
topic BLDC
JMAG
CFD
power electronics
agriculture applications
url https://www.mdpi.com/2571-5577/8/3/81
work_keys_str_mv AT javierdelacruzsoto analysisandassessmentofabrushlessdcoutrunnermotorforagriculturedronesusingjmag
AT josejgasconavalos analysisandassessmentofabrushlessdcoutrunnermotorforagriculturedronesusingjmag
AT jesseyrumbomorales analysisandassessmentofabrushlessdcoutrunnermotorforagriculturedronesusingjmag
AT gerardoortiztorres analysisandassessmentofabrushlessdcoutrunnermotorforagriculturedronesusingjmag
AT manuelazuritagil analysisandassessmentofabrushlessdcoutrunnermotorforagriculturedronesusingjmag
AT felipedjsorciavazquez analysisandassessmentofabrushlessdcoutrunnermotorforagriculturedronesusingjmag
AT javierperezramirez analysisandassessmentofabrushlessdcoutrunnermotorforagriculturedronesusingjmag
AT obedavallelopez analysisandassessmentofabrushlessdcoutrunnermotorforagriculturedronesusingjmag
AT susanaegarciacastro analysisandassessmentofabrushlessdcoutrunnermotorforagriculturedronesusingjmag
AT hectormbuenabadarias analysisandassessmentofabrushlessdcoutrunnermotorforagriculturedronesusingjmag
AT moisesramosmartinez analysisandassessmentofabrushlessdcoutrunnermotorforagriculturedronesusingjmag
AT mariaalopezosorio analysisandassessmentofabrushlessdcoutrunnermotorforagriculturedronesusingjmag