Exact controllability for a nonlinear stochastic wave equation

<p>The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are <mml:math> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mrow><mml...

Full description

Saved in:
Bibliographic Details
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:Abstract and Applied Analysis
Online Access:http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/74264
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832556383177801728
collection DOAJ
description <p>The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are <mml:math> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo></mml:mrow><mml:mo>&#x00D7;</mml:mo><mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>&#x2212;</mml:mo><mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> with <mml:math> <mml:mi>G</mml:mi> </mml:math> being a bounded open subset of <mml:math> <mml:msup> <mml:mi>R</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:math> and the nonlinear terms having at most a linear growth.</p>
format Article
id doaj-art-1f4ee172bf2344f6adc9ce5485d56af0
institution Kabale University
issn 1085-3375
language English
publishDate 2006-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-1f4ee172bf2344f6adc9ce5485d56af02025-02-03T05:45:34ZengWileyAbstract and Applied Analysis1085-33752006-01-012006Exact controllability for a nonlinear stochastic wave equation<p>The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are <mml:math> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo></mml:mrow><mml:mo>&#x00D7;</mml:mo><mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>&#x2212;</mml:mo><mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> with <mml:math> <mml:mi>G</mml:mi> </mml:math> being a bounded open subset of <mml:math> <mml:msup> <mml:mi>R</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:math> and the nonlinear terms having at most a linear growth.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/74264
spellingShingle Exact controllability for a nonlinear stochastic wave equation
Abstract and Applied Analysis
title Exact controllability for a nonlinear stochastic wave equation
title_full Exact controllability for a nonlinear stochastic wave equation
title_fullStr Exact controllability for a nonlinear stochastic wave equation
title_full_unstemmed Exact controllability for a nonlinear stochastic wave equation
title_short Exact controllability for a nonlinear stochastic wave equation
title_sort exact controllability for a nonlinear stochastic wave equation
url http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/74264