Exact controllability for a nonlinear stochastic wave equation
<p>The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are <mml:math> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mrow><mml...
Saved in:
Format: | Article |
---|---|
Language: | English |
Published: |
Wiley
2006-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/74264 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832556383177801728 |
---|---|
collection | DOAJ |
description | <p>The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are <mml:math> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo></mml:mrow><mml:mo>×</mml:mo><mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>−</mml:mo><mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> with <mml:math> <mml:mi>G</mml:mi> </mml:math> being a bounded open subset of <mml:math> <mml:msup> <mml:mi>R</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:math> and the nonlinear terms having at most a linear growth.</p> |
format | Article |
id | doaj-art-1f4ee172bf2344f6adc9ce5485d56af0 |
institution | Kabale University |
issn | 1085-3375 |
language | English |
publishDate | 2006-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-1f4ee172bf2344f6adc9ce5485d56af02025-02-03T05:45:34ZengWileyAbstract and Applied Analysis1085-33752006-01-012006Exact controllability for a nonlinear stochastic wave equation<p>The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are <mml:math> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo></mml:mrow><mml:mo>×</mml:mo><mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mo>−</mml:mo><mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> with <mml:math> <mml:mi>G</mml:mi> </mml:math> being a bounded open subset of <mml:math> <mml:msup> <mml:mi>R</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:math> and the nonlinear terms having at most a linear growth.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/74264 |
spellingShingle | Exact controllability for a nonlinear stochastic wave equation Abstract and Applied Analysis |
title | Exact controllability for a nonlinear stochastic wave equation |
title_full | Exact controllability for a nonlinear stochastic wave equation |
title_fullStr | Exact controllability for a nonlinear stochastic wave equation |
title_full_unstemmed | Exact controllability for a nonlinear stochastic wave equation |
title_short | Exact controllability for a nonlinear stochastic wave equation |
title_sort | exact controllability for a nonlinear stochastic wave equation |
url | http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/74264 |