Wearable Humidity Sensor Using Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> Metal Halides with Hydroxyl Selective Phase Transition for Breath Monitoring
The low-dimensional metal halide Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> exhibits unique electrical and chemical properties. Notably, it undergoes a phase transition to CsCu<sub>2</sub>I<sub>3</sub> upon exposure to hydroxyl (-OH) gas, re...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Biosensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2079-6374/15/5/311 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The low-dimensional metal halide Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> exhibits unique electrical and chemical properties. Notably, it undergoes a phase transition to CsCu<sub>2</sub>I<sub>3</sub> upon exposure to hydroxyl (-OH) gas, resulting in significant changes in its electrical characteristics. In this study, we developed a highly selective semiconductor-based gas sensor utilizing Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub>. The material was synthesized on an Al<sub>2</sub>O<sub>3</sub> substrate with carbon electrodes using a solution-based process, enabling gas sensing based on its electrical properties. The sensor was further integrated into an Arduino-based real-time monitoring system for wearable applications. The final system was mounted onto a face mask, enabling the real-time detection of human respiration. This research presents a next-generation sensor platform for real-time respiratory monitoring, demonstrating the potential of Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> in advanced wearable bio-gas sensing applications. |
|---|---|
| ISSN: | 2079-6374 |