Optimization of Nb2O5/g-C3N4/PPy as an electrode material for prevailing electrochemical performance

The use of a ternary composite employing carbon material, polymer and metal oxide can effectively increase the performance of an electrode material used in Supercapacitors. Herein, we have facilely synthesized ternary composites of Nb2O5/g-C3N4/PPy (NGP) via in-situ polymerization reaction by system...

Full description

Saved in:
Bibliographic Details
Main Authors: Manisha, M. Taqi Qaeemy, Monika Dhanda, Suman Lata, Harish Kumar, Anshu Sharma
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-03-01
Series:Frontiers in Energy Research
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fenrg.2025.1511271/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of a ternary composite employing carbon material, polymer and metal oxide can effectively increase the performance of an electrode material used in Supercapacitors. Herein, we have facilely synthesized ternary composites of Nb2O5/g-C3N4/PPy (NGP) via in-situ polymerization reaction by systematically varying the amount of niobium pentoxide. The structural and morphological analysis of samples were examined through XRD, TGA, FESEM and BET, confirming a specific surface area of 68.936 m2/g for NGP composite. Nb2O5 nanoparticles prevent the restacking of g-C3N4 sheets and PPy form a spongy globular morphology around this structure resulting in enhanced electrochemical performance. Electrochemical assessments of the optimized composite, including CV, GCD, and EIS, revealed a specific capacitance of 1,290.15 F/g at 2 mV/s in 1 M H2SO4, with an energy density of 75.25 W h/kg at a power density of 450.01 W/kg, demonstrating the efficacy of the ternary composite strategy in advancing supercapacitor electrode properties. After 5000 CV cycles and 1000 GCD cycles, the electrode retained a specific capacitance of 95% and 91% of its initial value, respectively.
ISSN:2296-598X