Analysis and Design of a Transient-State Resonant Converter Used as a Frequency Multiplier
The main contribution of this paper is to show the analysis and design of a resonant converter which was designed to operate in the transient stage and with underdamped response, where the resonant network stage has a frequency equal to “n” times the frequency of the switching stage (<i>f<s...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/6/3346 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The main contribution of this paper is to show the analysis and design of a resonant converter which was designed to operate in the transient stage and with underdamped response, where the resonant network stage has a frequency equal to “n” times the frequency of the switching stage (<i>f<sub>sw</sub></i>) “<i>f<sub>o</sub></i> = <i>nf<sub>sw</sub></i>”. The main advantage of this design methodology is to be able to operate the converter with frequencies higher than 1 MHz in the resonant network stage, without obtaining high levels of losses in the inverse stage. To validate this design methodology, a full bridge resonant converter acting as a frequency multiplier was implemented for a low power wireless power transmission application. For the experimental tests, a base frequency of 300 kHz was decided in the inverting stage, with a frequency multiplication of <i>n</i> = 3, 5, 7 in the resonant network stage (900 kHz, 1.5 MHz, 2.1 MHz) for an output power of 12 watts. Experimental tests proved the operation of the converter acting as a multiplier, where it was possible to reduce losses in the inverter stage, achieving efficiencies of up to 93% in the switching stage with frequencies higher than 1 MHz. |
|---|---|
| ISSN: | 2076-3417 |