A Spatial Analysis of Coffee Plant Temperature and Its Relationship with Water Potential and Stomatal Conductance Using a Thermal Camera Embedded in a Remotely Piloted Aircraft

Coffee is a key agricultural product in national and international markets. Physiological parameters, such as plant growth indicators, can signal interruptions in these processes. This study aimed to characterize the temperature obtained by a thermal camera embedded in a remotely piloted aircraft (R...

Full description

Saved in:
Bibliographic Details
Main Authors: Luana Mendes dos Santos, Gabriel Araújo e Silva Ferraz, Milene Alves de Figueiredo Carvalho, Alisson André Vicente Campos, Pedro Menicucci Neto, Letícia Aparecida Gonçalves Xavier, Alessio Mattia, Valentina Becciolini, Giuseppe Rossi
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/14/10/2414
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coffee is a key agricultural product in national and international markets. Physiological parameters, such as plant growth indicators, can signal interruptions in these processes. This study aimed to characterize the temperature obtained by a thermal camera embedded in a remotely piloted aircraft (RPA) and evaluate its relationship with the water potential (WP) and stomatal conductance (gs) of an experimental coffee plantation using geostatistical techniques. The experiment was conducted at the Federal University of Lavras, Minas Gerais, Brazil. A rotary-wing RPA with an embedded thermal camera flew autonomously at a height of 10 m and speed of 10 m/s. Images were collected on 26 November 2019 (rainy season), and 11 August 2020 (dry season), between 9:30 am and 11:30 am. Data on gs and WP were collected in the field. The thermal images were processed using FLIR Tools 5.13, and temperature analysis and spatialization were undertaken using geostatistical tools and isocolor maps by Kriging interpolation in R 4.3.2 software. Field data were superimposed on final crop temperature maps using QuantumGIS version 3.10 software. The study found that with decreasing WP, stomatal closure and reduction in gs occurred, increasing the temperature due to water deficit. The temperature distribution maps identified areas of climatic variations indicating water deficit.
ISSN:2073-4395