A new inequality for a polynomial

Let p(z)=a0+∑j=tnajzj be a polynomial of degree n, having no zeros in |z|<k, k≥1 then it has been shown that for R>1 and |z|=1, |p(Rz)−p(z)|≤(Rn−1)(1+AtBtKt+1)/(1+kt+1+AtBt(kt+1+k2t))max|z|=1|p(z)|−{1−(1+AtBtkt+1)/(1+kt+1+AtBt(kt+1+k2t))}((Rn−1)m/kn), where m=min|z|=k|p(z)|, 1≤t<n, At=(Rt−1...

Full description

Saved in:
Bibliographic Details
Main Authors: K. K. Dewan, Harish Singh, R. S. Yadav
Format: Article
Language:English
Published: Wiley 2001-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171201006032
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850237701290196992
author K. K. Dewan
Harish Singh
R. S. Yadav
author_facet K. K. Dewan
Harish Singh
R. S. Yadav
author_sort K. K. Dewan
collection DOAJ
description Let p(z)=a0+∑j=tnajzj be a polynomial of degree n, having no zeros in |z|<k, k≥1 then it has been shown that for R>1 and |z|=1, |p(Rz)−p(z)|≤(Rn−1)(1+AtBtKt+1)/(1+kt+1+AtBt(kt+1+k2t))max|z|=1|p(z)|−{1−(1+AtBtkt+1)/(1+kt+1+AtBt(kt+1+k2t))}((Rn−1)m/kn), where m=min|z|=k|p(z)|, 1≤t<n, At=(Rt−1)/(Rn−1), and Bt=|at/a0|. Our result generalizes and improves some well-known results.
format Article
id doaj-art-1e1f1ed31a634f7fa36874dcaba8515c
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 2001-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-1e1f1ed31a634f7fa36874dcaba8515c2025-08-20T02:01:40ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252001-01-01281167968410.1155/S0161171201006032A new inequality for a polynomialK. K. Dewan0Harish Singh1R. S. Yadav2Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, IndiaDepartment of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, IndiaDepartment of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, IndiaLet p(z)=a0+∑j=tnajzj be a polynomial of degree n, having no zeros in |z|<k, k≥1 then it has been shown that for R>1 and |z|=1, |p(Rz)−p(z)|≤(Rn−1)(1+AtBtKt+1)/(1+kt+1+AtBt(kt+1+k2t))max|z|=1|p(z)|−{1−(1+AtBtkt+1)/(1+kt+1+AtBt(kt+1+k2t))}((Rn−1)m/kn), where m=min|z|=k|p(z)|, 1≤t<n, At=(Rt−1)/(Rn−1), and Bt=|at/a0|. Our result generalizes and improves some well-known results.http://dx.doi.org/10.1155/S0161171201006032
spellingShingle K. K. Dewan
Harish Singh
R. S. Yadav
A new inequality for a polynomial
International Journal of Mathematics and Mathematical Sciences
title A new inequality for a polynomial
title_full A new inequality for a polynomial
title_fullStr A new inequality for a polynomial
title_full_unstemmed A new inequality for a polynomial
title_short A new inequality for a polynomial
title_sort new inequality for a polynomial
url http://dx.doi.org/10.1155/S0161171201006032
work_keys_str_mv AT kkdewan anewinequalityforapolynomial
AT harishsingh anewinequalityforapolynomial
AT rsyadav anewinequalityforapolynomial
AT kkdewan newinequalityforapolynomial
AT harishsingh newinequalityforapolynomial
AT rsyadav newinequalityforapolynomial