Gel Formation Mechanism of κ-Carrageenan in Co-solute Field and Its Application in 3D Printing

κ-Carrageenan is widely used in the food industry due to its excellent gelling ability. The co-solute field refers to the environment in which the sol-gel transformation of polymer materials, such as proteins or polysaccharides, occurs. This environment is not a simple aqueous solution containing on...

Full description

Saved in:
Bibliographic Details
Main Authors: Meirong RUAN, Zhenbin LIU, Siyu HA, Yucheng ZENG, Yanhua TANG, Hongbo LI, Liangbin HU, Haizhen MO
Format: Article
Language:zho
Published: The editorial department of Science and Technology of Food Industry 2025-03-01
Series:Shipin gongye ke-ji
Subjects:
Online Access:http://www.spgykj.com/cn/article/doi/10.13386/j.issn1002-0306.2024030334
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:κ-Carrageenan is widely used in the food industry due to its excellent gelling ability. The co-solute field refers to the environment in which the sol-gel transformation of polymer materials, such as proteins or polysaccharides, occurs. This environment is not a simple aqueous solution containing only polymer components, it also includes one or more small molecule co-solutes such as sucrose, emulsifiers, and polyols. Co-solutes significantly impact the gelation process of κ-carrageenan. Three main hypotheses explain this mechanism: The ''structure of water" effect induced by co-solutes, the "expulsion effect" of polymers on co-solutes, and the "binding effect" between co-solutes and polymers. However, there is no unified conclusion yet. Additionally, this article reviews the application of κ-carrageenan in 3D printed food, including its use as a gel matrix material for 3D printing and as an additive to regulate the 3D printing characteristics of different food systems.
ISSN:1002-0306