Spatiotemporal Dynamics and Drivers of Vegetation Carbon Sinks in Zhejiang Province: A Case Study in Rapidly Urbanizing Subtropical Ecosystems
As a national ecological civilization pilot, Zhejiang’s growing vegetation carbon sink capacity is important for both regional ecological security and China’s carbon neutrality goals, but current studies lack a comprehensive assessment of multi-factor interactions. This study employed an improved Ca...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Plants |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2223-7747/14/7/1151 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | As a national ecological civilization pilot, Zhejiang’s growing vegetation carbon sink capacity is important for both regional ecological security and China’s carbon neutrality goals, but current studies lack a comprehensive assessment of multi-factor interactions. This study employed an improved Carnegie–Ames–Stanford Approach (CASA) and soil respiration empirical equation to estimate Net Ecosystem Productivity (NEP) in Zhejiang Province, and trend analysis, partial correlation analysis, and the GeoDetector model based on optimal parameters (OPGD) were utilized to investigate the spatiotemporal variations and driving factors of vegetation NEP. The results showed that the multi-year average NEP and carbon sink capacity in Zhejiang Province were 387.67 g C m<sup>−2</sup> a<sup>−1</sup> and 38.84 Tg C a<sup>−1</sup>, exhibiting an increasing trend at an average rate of 2.15 g C m<sup>−2</sup> a<sup>−1</sup> and 0.23 Tg C a<sup>−1</sup>, respectively. Spatially, NEP was higher in the western and southern mountainous regions and lower in the eastern coastal and northern plains. NEP in Zhejiang Province was driven by both natural and anthropogenic factors, with NDVI (q = 0.502) and elevation (q = 0.373) being the primary natural drivers, and nighttime light intensity (q = 0.327) and impervious surface dynamics (q = 0.295) being the main anthropogenic drivers. Moreover, the interactions among these factors all exhibited synergistic enhancement effects. Overall, Zhejiang Province functioned predominantly as a carbon sink, with its sequestration capacity gradually strengthening over time. The combined effects of natural and anthropogenic factors drove the spatiotemporal heterogeneity of vegetation NEP. These findings highlight the importance of coordinated ecosystem management strategies that consider both natural and anthropogenic-induced impacts to enhance the achievement of regional carbon sink goals. |
|---|---|
| ISSN: | 2223-7747 |