An Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Controller for Supercritical Power Plants

This study introduces an Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Control (EEA-ESKF-MPC) method to tackle strong coupling and inertia in supercritical power plants. By enhancing the ESKF-MPC framework with a mechanism that dynamically adjusts error weights based on real-...

Full description

Saved in:
Bibliographic Details
Main Authors: Gang Chen, Shan Hua, Changhao Fan, Chun Wang, Shuchong Wang, Li Sun
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/18/7/387
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study introduces an Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Control (EEA-ESKF-MPC) method to tackle strong coupling and inertia in supercritical power plants. By enhancing the ESKF-MPC framework with a mechanism that dynamically adjusts error weights based on real-time deviations and employs exponential smoothing, alongside a BP neural network for thermal unit simulation, the approach achieves superior performance. Simulations show reductions in the Integrated Absolute Error (IAE) for load and temperature by 3.05% and 2.46%, respectively, with a modest 0.43% pressure IAE increase compared to ESKF-MPC. Command disturbance tests and real condition tracking experiments, utilizing data from a 350 MW supercritical unit, reinforce the method’s effectiveness, highlighting its exceptional dynamic performance and precise tracking of operational parameter changes under multivariable coupling conditions, offering a scalable solution for modern power systems.
ISSN:1999-4893