Simulation-Based Evaluation of Robust Transformation Techniques for Median Estimation Under Simple Random Sampling

An efficient estimator can reduce both bias and mean squared error to provide more accurate results by using the transformation strategy. In this paper, an enhanced class of ratio–product types of estimators is introduced, which employs the transformation technique by linearly combining two robust m...

Full description

Saved in:
Bibliographic Details
Main Authors: Fatimah A. Almulhim, Abdulaziz S. Alghamdi
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/4/301
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An efficient estimator can reduce both bias and mean squared error to provide more accurate results by using the transformation strategy. In this paper, an enhanced class of ratio–product types of estimators is introduced, which employs the transformation technique by linearly combining two robust measures, the trimean and decile mean, and five non-conventional measures, the range, inter-quartile range, mid-range, quartile average, and quartile deviation, on auxiliary variables with a simple random sampling method to estimate the finite population median. This transformation approach improves efficiency and enables estimators to manage data variability better. Using these estimators, we investigate their bias and mean squared error up to the first order of approximation. A comparison of the proposed estimators and existing methods is conducted through five simulated populations generated through different suitable distributions and three real datasets. By improving the precision and efficiency of median estimation, the proposed estimators ensure accurate and reliable results. Comparing the new estimators to traditional estimators, the findings show superior performance for new estimators in terms of mean squared errors (MSEs).
ISSN:2075-1680