Graded 1-Absorbing Prime Ideals over Non-Commutative Graded Rings

In this article, we define and study graded 1-absorbing prime ideals and graded weakly 1-absorbing prime ideals in non-commutative graded rings as a new class of graded ideals that lies between graded prime ideals (graded weakly prime ideals) and graded 2-absorbing ideals (graded weakly 2-absorbing...

Full description

Saved in:
Bibliographic Details
Main Authors: Azzh Saad Alshehry, Rashid Abu-Dawwas, Rahaf Abudalo
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/5/365
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850257953283637248
author Azzh Saad Alshehry
Rashid Abu-Dawwas
Rahaf Abudalo
author_facet Azzh Saad Alshehry
Rashid Abu-Dawwas
Rahaf Abudalo
author_sort Azzh Saad Alshehry
collection DOAJ
description In this article, we define and study graded 1-absorbing prime ideals and graded weakly 1-absorbing prime ideals in non-commutative graded rings as a new class of graded ideals that lies between graded prime ideals (graded weakly prime ideals) and graded 2-absorbing ideals (graded weakly 2-absorbing ideals). Let <i>G</i> be a group and let <i>R</i> be a non-commutative <i>G</i>-graded ring with nonzero unity. Let <i>P</i> be a proper graded ideal of <i>R</i>. We then say that <i>P</i> is a graded 1-absorbing prime ideal (a graded weakly 1-absorbing prime ideal) of <i>R</i> if, for each nonunit homogeneous element <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>R</mi></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>R</mi><mi>s</mi><mi>R</mi><mi>t</mi><mo>⊆</mo><mi>P</mi></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>0</mn><mo>}</mo><mo>≠</mo><mi>r</mi><mi>R</mi><mi>s</mi><mi>R</mi><mi>t</mi><mo>⊆</mo><mi>P</mi></mrow></semantics></math></inline-formula>), either <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>s</mi><mo>∈</mo><mi>P</mi></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mi>P</mi></mrow></semantics></math></inline-formula>. We present a number of properties and characterizations of these graded ideals.
format Article
id doaj-art-1d5bf2824fa94e718af359bf07add006
institution OA Journals
issn 2075-1680
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-1d5bf2824fa94e718af359bf07add0062025-08-20T01:56:17ZengMDPI AGAxioms2075-16802025-05-0114536510.3390/axioms14050365Graded 1-Absorbing Prime Ideals over Non-Commutative Graded RingsAzzh Saad Alshehry0Rashid Abu-Dawwas1Rahaf Abudalo2Department of Mathematical Sciences, Faculty of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi ArabiaDepartment of Mathematics, Yarmouk University, Irbid 21163, JordanDepartment of Mathematics, Yarmouk University, Irbid 21163, JordanIn this article, we define and study graded 1-absorbing prime ideals and graded weakly 1-absorbing prime ideals in non-commutative graded rings as a new class of graded ideals that lies between graded prime ideals (graded weakly prime ideals) and graded 2-absorbing ideals (graded weakly 2-absorbing ideals). Let <i>G</i> be a group and let <i>R</i> be a non-commutative <i>G</i>-graded ring with nonzero unity. Let <i>P</i> be a proper graded ideal of <i>R</i>. We then say that <i>P</i> is a graded 1-absorbing prime ideal (a graded weakly 1-absorbing prime ideal) of <i>R</i> if, for each nonunit homogeneous element <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>∈</mo><mi>R</mi></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>R</mi><mi>s</mi><mi>R</mi><mi>t</mi><mo>⊆</mo><mi>P</mi></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>0</mn><mo>}</mo><mo>≠</mo><mi>r</mi><mi>R</mi><mi>s</mi><mi>R</mi><mi>t</mi><mo>⊆</mo><mi>P</mi></mrow></semantics></math></inline-formula>), either <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>s</mi><mo>∈</mo><mi>P</mi></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>t</mi><mo>∈</mo><mi>P</mi></mrow></semantics></math></inline-formula>. We present a number of properties and characterizations of these graded ideals.https://www.mdpi.com/2075-1680/14/5/365graded prime idealsgraded weakly prime idealsgraded 1-absorbing prime idealsgraded weakly 1-absorbing prime ideals
spellingShingle Azzh Saad Alshehry
Rashid Abu-Dawwas
Rahaf Abudalo
Graded 1-Absorbing Prime Ideals over Non-Commutative Graded Rings
Axioms
graded prime ideals
graded weakly prime ideals
graded 1-absorbing prime ideals
graded weakly 1-absorbing prime ideals
title Graded 1-Absorbing Prime Ideals over Non-Commutative Graded Rings
title_full Graded 1-Absorbing Prime Ideals over Non-Commutative Graded Rings
title_fullStr Graded 1-Absorbing Prime Ideals over Non-Commutative Graded Rings
title_full_unstemmed Graded 1-Absorbing Prime Ideals over Non-Commutative Graded Rings
title_short Graded 1-Absorbing Prime Ideals over Non-Commutative Graded Rings
title_sort graded 1 absorbing prime ideals over non commutative graded rings
topic graded prime ideals
graded weakly prime ideals
graded 1-absorbing prime ideals
graded weakly 1-absorbing prime ideals
url https://www.mdpi.com/2075-1680/14/5/365
work_keys_str_mv AT azzhsaadalshehry graded1absorbingprimeidealsovernoncommutativegradedrings
AT rashidabudawwas graded1absorbingprimeidealsovernoncommutativegradedrings
AT rahafabudalo graded1absorbingprimeidealsovernoncommutativegradedrings