On generalized homoderivations of prime rings

Let $\mathscr{A}$ be a ring with its center $\mathscr{Z}(\mathscr{A}).$ An additive mapping $\xi\colon \mathscr{A}\to \mathscr{A}$ is called a homoderivation on $\mathscr{A}$ if $\forall\ a,b\in \mathscr{A}\colon\quad \xi(ab)=\xi(a)\xi(b)+\xi(a)b+a\xi(b).$ An additive map $\psi\colon \mathscr{...

Full description

Saved in:
Bibliographic Details
Main Authors: N. Rehman, E. K. Sogutcu, H. M. Alnoghashi
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2023-09-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/354
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849428524582043648
author N. Rehman
E. K. Sogutcu
H. M. Alnoghashi
author_facet N. Rehman
E. K. Sogutcu
H. M. Alnoghashi
author_sort N. Rehman
collection DOAJ
description Let $\mathscr{A}$ be a ring with its center $\mathscr{Z}(\mathscr{A}).$ An additive mapping $\xi\colon \mathscr{A}\to \mathscr{A}$ is called a homoderivation on $\mathscr{A}$ if $\forall\ a,b\in \mathscr{A}\colon\quad \xi(ab)=\xi(a)\xi(b)+\xi(a)b+a\xi(b).$ An additive map $\psi\colon \mathscr{A}\to \mathscr{A}$ is called a generalized homoderivation with associated homoderivation $\xi$ on $\mathscr{A}$ if $\forall\ a,b\in \mathscr{A}\colon\quad\psi(ab)=\psi(a)\psi(b)+\psi(a)b+a\xi(b).$ This study examines whether a prime ring $\mathscr{A}$ with a generalized homoderivation $\psi$ that fulfils specific algebraic identities is commutative. Precisely, we discuss the following identities: $\psi(a)\psi(b)+ab\in \mathscr{Z}(\mathscr{A}),\quad \psi(a)\psi(b)-ab\in \mathscr{Z}(\mathscr{A}),\quad \psi(a)\psi(b)+ab\in \mathscr{Z}(\mathscr{A}),$ $\psi(a)\psi(b)-ab\in \mathscr{Z}(\mathscr{A}),\quad \psi(ab)+ab\in \mathscr{Z}(\mathscr{A}),\quad \psi(ab)-ab\in \mathscr{Z}(\mathscr{A}),$ $\psi(ab)+ba\in \mathscr{Z}(\mathscr{A}),\quad \psi(ab)-ba\in \mathscr{Z}(\mathscr{A})\quad (\forall\ a, b\in \mathscr{A}).$ Furthermore, examples are given to prove that the restrictions imposed on the hypothesis of the various theorems were not superfluous.
format Article
id doaj-art-1d58e16bf0044e3d81642f5914009f9b
institution Kabale University
issn 1027-4634
2411-0620
language deu
publishDate 2023-09-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-1d58e16bf0044e3d81642f5914009f9b2025-08-20T03:28:41ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202023-09-01601122710.30970/ms.60.1.12-27354On generalized homoderivations of prime ringsN. Rehman0E. K. Sogutcu1H. M. Alnoghashi2Aligarh Muslim UniversityDepartment of Mathematics, Cumhuriyet University Sivas, TurkeyDepartment of Computer Science, College of Engineering and Information Technology, Amran University Amran, YemenLet $\mathscr{A}$ be a ring with its center $\mathscr{Z}(\mathscr{A}).$ An additive mapping $\xi\colon \mathscr{A}\to \mathscr{A}$ is called a homoderivation on $\mathscr{A}$ if $\forall\ a,b\in \mathscr{A}\colon\quad \xi(ab)=\xi(a)\xi(b)+\xi(a)b+a\xi(b).$ An additive map $\psi\colon \mathscr{A}\to \mathscr{A}$ is called a generalized homoderivation with associated homoderivation $\xi$ on $\mathscr{A}$ if $\forall\ a,b\in \mathscr{A}\colon\quad\psi(ab)=\psi(a)\psi(b)+\psi(a)b+a\xi(b).$ This study examines whether a prime ring $\mathscr{A}$ with a generalized homoderivation $\psi$ that fulfils specific algebraic identities is commutative. Precisely, we discuss the following identities: $\psi(a)\psi(b)+ab\in \mathscr{Z}(\mathscr{A}),\quad \psi(a)\psi(b)-ab\in \mathscr{Z}(\mathscr{A}),\quad \psi(a)\psi(b)+ab\in \mathscr{Z}(\mathscr{A}),$ $\psi(a)\psi(b)-ab\in \mathscr{Z}(\mathscr{A}),\quad \psi(ab)+ab\in \mathscr{Z}(\mathscr{A}),\quad \psi(ab)-ab\in \mathscr{Z}(\mathscr{A}),$ $\psi(ab)+ba\in \mathscr{Z}(\mathscr{A}),\quad \psi(ab)-ba\in \mathscr{Z}(\mathscr{A})\quad (\forall\ a, b\in \mathscr{A}).$ Furthermore, examples are given to prove that the restrictions imposed on the hypothesis of the various theorems were not superfluous.http://matstud.org.ua/ojs/index.php/matstud/article/view/354prime ringgeneralized homoderivationcommutativity
spellingShingle N. Rehman
E. K. Sogutcu
H. M. Alnoghashi
On generalized homoderivations of prime rings
Математичні Студії
prime ring
generalized homoderivation
commutativity
title On generalized homoderivations of prime rings
title_full On generalized homoderivations of prime rings
title_fullStr On generalized homoderivations of prime rings
title_full_unstemmed On generalized homoderivations of prime rings
title_short On generalized homoderivations of prime rings
title_sort on generalized homoderivations of prime rings
topic prime ring
generalized homoderivation
commutativity
url http://matstud.org.ua/ojs/index.php/matstud/article/view/354
work_keys_str_mv AT nrehman ongeneralizedhomoderivationsofprimerings
AT eksogutcu ongeneralizedhomoderivationsofprimerings
AT hmalnoghashi ongeneralizedhomoderivationsofprimerings