Cilia-Inspired Bionic Tactile E-Skin: Structure, Fabrication and Applications

The rapid advancement of tactile electronic skin (E-skin) has highlighted the effectiveness of incorporating bionic, force-sensitive microstructures in order to enhance sensing performance. Among these, cilia-like microstructures with high aspect ratios, whose inspiration is mammalian hair and the l...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiahe Yu, Muxi Ai, Cairong Liu, Hengchang Bi, Xing Wu, Wu Bin Ying, Zhe Yu
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/1/76
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rapid advancement of tactile electronic skin (E-skin) has highlighted the effectiveness of incorporating bionic, force-sensitive microstructures in order to enhance sensing performance. Among these, cilia-like microstructures with high aspect ratios, whose inspiration is mammalian hair and the lateral line system of fish, have attracted significant attention for their unique ability to enable E-skin to detect weak signals, even in extreme conditions. Herein, this review critically examines recent progress in the development of cilia-inspired bionic tactile E-skin, with a focus on columnar, conical and filiform microstructures, as well as their fabrication strategies, including template-based and template-free methods. The relationship between sensing performance and fabrication approaches is thoroughly analyzed, offering a framework for optimizing sensitivity and resilience. We also explore the applications of these systems across various fields, such as medical diagnostics, motion detection, human–machine interfaces, dexterous robotics, near-field communication, and perceptual decoupling systems. Finally, we provide insights into the pathways toward industrializing cilia-inspired bionic tactile E-skin, aiming to drive innovation and unlock the technology’s potential for future applications.
ISSN:1424-8220