Magnetic resonance radiomics-based deep learning model for diagnosis of Alzheimer's disease

Introduction The progression of Alzheimer's disease (AD) has been shown to significantly correlate with changes in brain tissue structure and leads to cognitive decline and dementia. Using radiomic features derived from brain magnetic resonance imaging (MRI) scan, we can get the help of deep le...

Full description

Saved in:
Bibliographic Details
Main Authors: Zengbei Yuan, Na Qi, Xing Chen, Yingying Luo, Zirong Zhou, Jie Wang, Junhao Wu, Jun Zhao
Format: Article
Language:English
Published: SAGE Publishing 2025-04-01
Series:Digital Health
Online Access:https://doi.org/10.1177/20552076251337183
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Introduction The progression of Alzheimer's disease (AD) has been shown to significantly correlate with changes in brain tissue structure and leads to cognitive decline and dementia. Using radiomic features derived from brain magnetic resonance imaging (MRI) scan, we can get the help of deep learning (DL) model for diagnosing AD. Methods This study proposes the use of the DL model under the framework of MR radiomics for AD diagnosis. Two cross-racial independent cohorts from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (141 AD, 166 Mild Cognitive Impairment (MCI), and 231 normal control (NC) subjects) and Huashan hospital (45 AD, 35 MCI, and 31 NC subjects) were enrolled. We first performed preprocessing of MRI using methods such as spatial normalization and denoizing filtering. Next, we conducted Statistical Parametric Mapping analysis based on a two-sample t-test to identify regions of interest and extracted radiomic features using Radiomics tools. Subsequently, feature selection was carried out using the Least Absolute Shrinkage and Selection Operator model. Finally, the selected radiomic features were used to implement the AD diagnosis task with the TabNet model. Results The model was quantitatively evaluated using the average values obtained from five-fold cross-validation. In the three-way classification task, the model achieved classification average area under the curve (AUC) of 0.8728 and average accuracy (ACC) of 0.7111 for AD versus MCI versus NC. For the binary classification task, the average AUC values were 0.8778, 0.8864, and 0.9506 for AD versus MCI, MCI versus NC, and AD versus NC, respectively, with average ACC of 0.8667, 0.8556, and 0.9222 for these comparisons. Conclusions The proposed model exhibited excellent performance in the AD diagnosis task, accurately distinguishing different stages of AD. This confirms the value of MR DL radiomic model for AD diagnosis.
ISSN:2055-2076