Multi-Objective Optimization of Offshore Wind Farm Configuration for Energy Storage Based on NSGA-II

The configuration of energy storage systems in offshore wind farms can effectively suppress fluctuations in wind power and enhance the stability of the power grid. However, the economic balance between the cost of energy storage systems and the fluctuations in wind power remains an urgent challenge...

Full description

Saved in:
Bibliographic Details
Main Authors: Xin Lin, Wenchuan Meng, Ming Yu, Zaimin Yang, Qideng Luo, Zhi Rao, Jingkang Peng, Yingquan Chen
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/12/3061
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The configuration of energy storage systems in offshore wind farms can effectively suppress fluctuations in wind power and enhance the stability of the power grid. However, the economic balance between the cost of energy storage systems and the fluctuations in wind power remains an urgent challenge to be addressed, especially against the backdrop of widespread spot trading in the electricity market. How to achieve effective wind power stabilization at the lowest cost has become a key issue. This paper proposes three different energy storage configuration strategies and adopts the non-dominated sorting genetic algorithm (NSGA-II) to conduct multi-objective optimization of the system. NSGA-II performed stably in dual-objective scenarios and effectively balanced the relationship between the investment cost of the energy storage system and power fluctuations through the explicit elite strategy. Furthermore, this study analyzed the correlation between the rated power and rated capacity of the energy storage system and the battery life, and corrected the battery life of the Pareto frontier solution obtained by NSGA-II. The research results show that when only considering the investment cost of the energy storage, the optimal configuration was a rated power of 4 MW and a rated capacity of 28 MWh, which could better balance the investment economy and power fluctuation. When further considering the participation of energy storage systems in the electricity spot market, the economic efficiency of the energy storage systems could be significantly improved through the fixed-period electricity price arbitrage method. At this point, the optimal configuration was a rated power of 8 MW and a rated capacity of 37 MWh. The corresponding project investment cost was CNY 242.77 million, and the annual fluctuation rate of the wind power output decreased to 17.84%.
ISSN:1996-1073