12/15-lipoxygenase mediates disturbed flow-induced endothelial dysfunction and atherosclerosis

Abstract Background Disturbed flow regions in the vasculature are predisposed to endothelial dysfunction and atherosclerotic plaque formation. The enzyme 12/15-lipoxygenase (12/15-LOX, encoded by ALOX15) has emerged as a promising therapeutic target for atherosclerosis. However, the relationship bet...

Full description

Saved in:
Bibliographic Details
Main Authors: Jia Wei Chen, Shi Li Chen, Xin Rui Wu, Xin Yi Shu, Si Yi Tang, He Yuan, You Ran Li, Jin Wei Quan, Shuo Feng, Rui Yan Zhang, Chen Die Yang, Lin Lu, Xiao Qun Wang
Format: Article
Language:English
Published: BMC 2025-07-01
Series:Molecular Medicine
Subjects:
Online Access:https://doi.org/10.1186/s10020-025-01297-0
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Disturbed flow regions in the vasculature are predisposed to endothelial dysfunction and atherosclerotic plaque formation. The enzyme 12/15-lipoxygenase (12/15-LOX, encoded by ALOX15) has emerged as a promising therapeutic target for atherosclerosis. However, the relationship between 12/15-LOX and disturbed flow-induced atherosclerosis remains uncharacterized. Methods Expression of 12/15-LOX in endothelial cells (ECs) exposed to steady flow and disturbed flow was compared in vivo and in vitro. The effect of 12/15-LOX on ECs was analyzed by using ALOX15 knockout mice, EC-specific adeno-associated virus (AAV)-mediated delivery of ALOX15-shRNA, and specific inhibitors. Partial carotid ligation mouse model was established to ascertain the role of 12/15-LOX in ECs under disturbed flow. Results Compared to steady flow regions, 12/15-LOX was significantly upregulated in ECs at disturbed flow sites. In vivo and in vitro experiments demonstrated that 12/15-LOX promoted disturbed flow-elicited endothelial dysfunction. Mass spectrometry analysis revealed that 12/15-LOX promoted production of 15 s-HETE, a pro-inflammatory eicosanoid metabolite, in ECs exposed to disturbed flow. Furthermore, we showed that disturbed flow activated 12/15-LOX expression through transactivation of its promoter by a mechanosensitive transcription factor sterol regulatory element binding protein 2 (SREBP2). Finally, EC-specific knockdown or inhibition of 12/15-LOX substantially attenuated the development of atherosclerosis in disturbed flow regions. Conclusions Disturbed flow promoted 12/15-LOX expression via SREBP2, thereby leading to increased pro-inflammatory PUFA metabolites and ECs dysfunction. Targeting at SREBP2-12/15-LOX pathway should provide therapeutic perspectives to attenuate disturbed flow-induced atherosclerosis. Graphical abstract
ISSN:1528-3658