Research on Intelligent Control Technology for a Rail-Based High-Throughput Crop Phenotypic Platform Based on Digital Twins

Rail-based crop phenotypic platforms operating in open-field environments face challenges such as environmental variability and unstable data quality, highlighting the urgent need for intelligent, online data acquisition strategies. This study proposes a digital twin-based data acquisition strategy...

Full description

Saved in:
Bibliographic Details
Main Authors: Haishen Liu, Weiliang Wen, Wenbo Gou, Xianju Lu, Hanyu Ma, Lin Zhu, Minggang Zhang, Sheng Wu, Xinyu Guo
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/15/11/1217
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rail-based crop phenotypic platforms operating in open-field environments face challenges such as environmental variability and unstable data quality, highlighting the urgent need for intelligent, online data acquisition strategies. This study proposes a digital twin-based data acquisition strategy tailored to such platforms. A closed-loop architecture “comprising connection, computation, prediction, decision-making, and execution“ was developed to build DT-FieldPheno, a digital twin system that enables real-time synchronization between physical equipment and its virtual counterpart, along with dynamic device monitoring. Weather condition standards were defined based on multi-source sensor requirements, and a dual-layer weather risk assessment model was constructed using the analytic hierarchy process (AHP) and fuzzy comprehensive evaluation by integrating weather forecasts and real-time meteorological data to guide adaptive data acquisition scheduling. Field deployment over 27 consecutive days in a maize field demonstrated that DT-FieldPheno reduced the manual inspection workload by 50%. The system successfully identified and canceled two high-risk tasks under wind-speed threshold exceedance and optimized two others affected by gusts and rainfall, thereby avoiding ineffective operations. It also achieved sub-second responses to trajectory deviation and communication anomalies. The synchronized digital twin interface supported remote, real-time visual supervision. DT-FieldPheno provides a technological paradigm for advancing crop phenotypic platforms toward intelligent regulation, remote management, and multi-system integration. Future work will focus on expanding multi-domain sensing capabilities, enhancing model adaptability, and evaluating system energy consumption and computational overhead to support scalable field deployment.
ISSN:2077-0472