Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observations
<p>Pyrocumulonimbus clouds (pyroCbs) generated by intense wildfires can serve as a direct pathway for the injection of aerosols and gaseous pollutants into the lower stratosphere, resulting in significant chemical, radiative, and dynamical changes. Canada experienced an extremely severe wildfi...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Copernicus Publications
2024-10-01
|
| Series: | Atmospheric Chemistry and Physics |
| Online Access: | https://acp.copernicus.org/articles/24/11727/2024/acp-24-11727-2024.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850268214626353152 |
|---|---|
| author | S. Zhang S. Solomon C. D. Boone G. Taha G. Taha |
| author_facet | S. Zhang S. Solomon C. D. Boone G. Taha G. Taha |
| author_sort | S. Zhang |
| collection | DOAJ |
| description | <p>Pyrocumulonimbus clouds (pyroCbs) generated by intense wildfires can serve as a direct pathway for the injection of aerosols and gaseous pollutants into the lower stratosphere, resulting in significant chemical, radiative, and dynamical changes. Canada experienced an extremely severe wildfire season in 2023, with a total area burned that substantially exceeded those of previous events known to have impacted the stratosphere (such as the 2020 Australian fires). This season also had record-high pyroCb activity, which raises the question of whether the 2023 Canadian event resulted in significant stratospheric perturbations. Here, we investigate this anomalous wildfire season using retrievals from multiple satellite instruments, ACE-FTS (Atmospheric Chemistry Experiment – Fourier transform spectrometer), OMPS LP (Ozone Mapping and Profiler Suite Limb Profiler), and MLS (Microwave Limb Sounder), to determine the vertical extents of the wildfire smoke along with chemical signatures of biomass burning. These data show that smoke primarily reached the upper troposphere, and only a nominal amount managed to penetrate the tropopause. Only a few ACE-FTS occultations captured elevated abundances of biomass-burning products in the lowermost stratosphere. OMPS LP aerosol measurements also indicate that any smoke that made it past the tropopause did not last long enough or reach high enough to significantly perturb stratospheric composition. While this work focuses on Canadian wildfires given the extensive burned area, pyroCbs at other longitudes (e.g., Siberia) are also captured in the compositional analysis. These results highlight that despite the formation of many pyroCbs in major wildfires, those capable of penetrating the tropopause are extremely rare; this in turn means that even a massive area burned is not necessarily an indicator of stratospheric effects.</p> |
| format | Article |
| id | doaj-art-1bfa7c593d274dc8ba34da724a0d0fee |
| institution | OA Journals |
| issn | 1680-7316 1680-7324 |
| language | English |
| publishDate | 2024-10-01 |
| publisher | Copernicus Publications |
| record_format | Article |
| series | Atmospheric Chemistry and Physics |
| spelling | doaj-art-1bfa7c593d274dc8ba34da724a0d0fee2025-08-20T01:53:31ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242024-10-0124117271173610.5194/acp-24-11727-2024Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observationsS. Zhang0S. Solomon1C. D. Boone2G. Taha3G. Taha4Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USADepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USADepartment of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, CanadaGoddard Earth Sciences Technology and Research (GESTAR) II, Morgan State University, Baltimore, MD 21251, USANASA Goddard Space Flight Center, Greenbelt, MD 20771, USA<p>Pyrocumulonimbus clouds (pyroCbs) generated by intense wildfires can serve as a direct pathway for the injection of aerosols and gaseous pollutants into the lower stratosphere, resulting in significant chemical, radiative, and dynamical changes. Canada experienced an extremely severe wildfire season in 2023, with a total area burned that substantially exceeded those of previous events known to have impacted the stratosphere (such as the 2020 Australian fires). This season also had record-high pyroCb activity, which raises the question of whether the 2023 Canadian event resulted in significant stratospheric perturbations. Here, we investigate this anomalous wildfire season using retrievals from multiple satellite instruments, ACE-FTS (Atmospheric Chemistry Experiment – Fourier transform spectrometer), OMPS LP (Ozone Mapping and Profiler Suite Limb Profiler), and MLS (Microwave Limb Sounder), to determine the vertical extents of the wildfire smoke along with chemical signatures of biomass burning. These data show that smoke primarily reached the upper troposphere, and only a nominal amount managed to penetrate the tropopause. Only a few ACE-FTS occultations captured elevated abundances of biomass-burning products in the lowermost stratosphere. OMPS LP aerosol measurements also indicate that any smoke that made it past the tropopause did not last long enough or reach high enough to significantly perturb stratospheric composition. While this work focuses on Canadian wildfires given the extensive burned area, pyroCbs at other longitudes (e.g., Siberia) are also captured in the compositional analysis. These results highlight that despite the formation of many pyroCbs in major wildfires, those capable of penetrating the tropopause are extremely rare; this in turn means that even a massive area burned is not necessarily an indicator of stratospheric effects.</p>https://acp.copernicus.org/articles/24/11727/2024/acp-24-11727-2024.pdf |
| spellingShingle | S. Zhang S. Solomon C. D. Boone G. Taha G. Taha Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observations Atmospheric Chemistry and Physics |
| title | Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observations |
| title_full | Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observations |
| title_fullStr | Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observations |
| title_full_unstemmed | Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observations |
| title_short | Investigating the vertical extent of the 2023 summer Canadian wildfire impacts with satellite observations |
| title_sort | investigating the vertical extent of the 2023 summer canadian wildfire impacts with satellite observations |
| url | https://acp.copernicus.org/articles/24/11727/2024/acp-24-11727-2024.pdf |
| work_keys_str_mv | AT szhang investigatingtheverticalextentofthe2023summercanadianwildfireimpactswithsatelliteobservations AT ssolomon investigatingtheverticalextentofthe2023summercanadianwildfireimpactswithsatelliteobservations AT cdboone investigatingtheverticalextentofthe2023summercanadianwildfireimpactswithsatelliteobservations AT gtaha investigatingtheverticalextentofthe2023summercanadianwildfireimpactswithsatelliteobservations AT gtaha investigatingtheverticalextentofthe2023summercanadianwildfireimpactswithsatelliteobservations |