Protocol to generate dual-target compounds using a transformer chemical language model

Summary: Here, we present a protocol to generate dual-target compounds (DT-CPDs) interacting with two distinct target proteins using a transformer-based chemical language model. We describe steps for installing software, preparing data, and pre-training the model on pairs of single-target compounds...

Full description

Saved in:
Bibliographic Details
Main Authors: Sanjana Srinivasan, Jürgen Bajorath
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:STAR Protocols
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666166724007494
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589960450932736
author Sanjana Srinivasan
Jürgen Bajorath
author_facet Sanjana Srinivasan
Jürgen Bajorath
author_sort Sanjana Srinivasan
collection DOAJ
description Summary: Here, we present a protocol to generate dual-target compounds (DT-CPDs) interacting with two distinct target proteins using a transformer-based chemical language model. We describe steps for installing software, preparing data, and pre-training the model on pairs of single-target compounds (ST-CPDs), which bind to an individual protein, and DT-CPDs. We then detail procedures for assembling ST- and corresponding DT-CPD data for specific protein pairs and evaluating the model’s performance on hold-out test sets.For complete details on the use and execution of this protocol, please refer to Srinivasan and Bajorath.1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
format Article
id doaj-art-1be7826bc1a0466c8973934a178b09f4
institution Kabale University
issn 2666-1667
language English
publishDate 2025-03-01
publisher Elsevier
record_format Article
series STAR Protocols
spelling doaj-art-1be7826bc1a0466c8973934a178b09f42025-01-24T04:45:43ZengElsevierSTAR Protocols2666-16672025-03-0161103584Protocol to generate dual-target compounds using a transformer chemical language modelSanjana Srinivasan0Jürgen Bajorath1Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, 53115 Bonn, Germany; Lamarr Institute for Machine Learning and Artificial Intelligence, Friedrich-Hirzebruch-Allee 5/6, 53115 Bonn, Germany; Corresponding authorDepartment of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, 53115 Bonn, Germany; Lamarr Institute for Machine Learning and Artificial Intelligence, Friedrich-Hirzebruch-Allee 5/6, 53115 Bonn, Germany; Corresponding authorSummary: Here, we present a protocol to generate dual-target compounds (DT-CPDs) interacting with two distinct target proteins using a transformer-based chemical language model. We describe steps for installing software, preparing data, and pre-training the model on pairs of single-target compounds (ST-CPDs), which bind to an individual protein, and DT-CPDs. We then detail procedures for assembling ST- and corresponding DT-CPD data for specific protein pairs and evaluating the model’s performance on hold-out test sets.For complete details on the use and execution of this protocol, please refer to Srinivasan and Bajorath.1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.http://www.sciencedirect.com/science/article/pii/S2666166724007494Molecular/Chemical ProbesSystems biologyChemistryComputer sciences
spellingShingle Sanjana Srinivasan
Jürgen Bajorath
Protocol to generate dual-target compounds using a transformer chemical language model
STAR Protocols
Molecular/Chemical Probes
Systems biology
Chemistry
Computer sciences
title Protocol to generate dual-target compounds using a transformer chemical language model
title_full Protocol to generate dual-target compounds using a transformer chemical language model
title_fullStr Protocol to generate dual-target compounds using a transformer chemical language model
title_full_unstemmed Protocol to generate dual-target compounds using a transformer chemical language model
title_short Protocol to generate dual-target compounds using a transformer chemical language model
title_sort protocol to generate dual target compounds using a transformer chemical language model
topic Molecular/Chemical Probes
Systems biology
Chemistry
Computer sciences
url http://www.sciencedirect.com/science/article/pii/S2666166724007494
work_keys_str_mv AT sanjanasrinivasan protocoltogeneratedualtargetcompoundsusingatransformerchemicallanguagemodel
AT jurgenbajorath protocoltogeneratedualtargetcompoundsusingatransformerchemicallanguagemodel