On representation of solutions to the heat equation

We propose a simple method to obtain semigroup representation of solutions to the heat equation using a local $L^2$ condition with prescribed growth and a boundedness condition within tempered distributions. This applies to many functional settings and, as an example, we consider the Koch and Tataru...

Full description

Saved in:
Bibliographic Details
Main Authors: Auscher, Pascal, Hou, Hedong
Format: Article
Language:English
Published: Académie des sciences 2024-09-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.593/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206210711781376
author Auscher, Pascal
Hou, Hedong
author_facet Auscher, Pascal
Hou, Hedong
author_sort Auscher, Pascal
collection DOAJ
description We propose a simple method to obtain semigroup representation of solutions to the heat equation using a local $L^2$ condition with prescribed growth and a boundedness condition within tempered distributions. This applies to many functional settings and, as an example, we consider the Koch and Tataru space related to $\operatorname{BMO}^{-1}$ initial data.
format Article
id doaj-art-1be45eebe42541b29f9aaba89cb05e64
institution Kabale University
issn 1778-3569
language English
publishDate 2024-09-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-1be45eebe42541b29f9aaba89cb05e642025-02-07T11:22:28ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-09-01362G776176810.5802/crmath.59310.5802/crmath.593On representation of solutions to the heat equationAuscher, Pascal0Hou, Hedong1https://orcid.org/0000-0002-2810-4480Université Paris-Saclay, CNRS, Laboratoire de Mathématiques d’Orsay, 91405 Orsay, FranceUniversité Paris-Saclay, CNRS, Laboratoire de Mathématiques d’Orsay, 91405 Orsay, FranceWe propose a simple method to obtain semigroup representation of solutions to the heat equation using a local $L^2$ condition with prescribed growth and a boundedness condition within tempered distributions. This applies to many functional settings and, as an example, we consider the Koch and Tataru space related to $\operatorname{BMO}^{-1}$ initial data.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.593/
spellingShingle Auscher, Pascal
Hou, Hedong
On representation of solutions to the heat equation
Comptes Rendus. Mathématique
title On representation of solutions to the heat equation
title_full On representation of solutions to the heat equation
title_fullStr On representation of solutions to the heat equation
title_full_unstemmed On representation of solutions to the heat equation
title_short On representation of solutions to the heat equation
title_sort on representation of solutions to the heat equation
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.593/
work_keys_str_mv AT auscherpascal onrepresentationofsolutionstotheheatequation
AT houhedong onrepresentationofsolutionstotheheatequation