New Results on Idempotent Operators in Hilbert Spaces
This paper provides a new proof of the operator norm identity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∥</mo><mi>Q</mi><mo>∥</mo><mo> </mo><mo&...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/14/7/509 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper provides a new proof of the operator norm identity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∥</mo><mi>Q</mi><mo>∥</mo><mo> </mo><mo>=</mo><mo> </mo><mo>∥</mo><mi>I</mi><mo>−</mo><mi>Q</mi><mo>∥</mo></mrow></semantics></math></inline-formula>, where <i>Q</i> is a bounded idempotent operator on a complex Hilbert space, and <i>I</i> is the identity operator. We also derive explicit lower and upper bounds for the distance from an arbitrary idempotent operator to the set of orthogonal projections. Our approach simplifies existing proofs. |
|---|---|
| ISSN: | 2075-1680 |