Pit Collapse Risk Fusion Early-Warning Method Based on Machine Learning and Improved Cloud Dempster–Shafer

Considering the complexity of the metro pit construction environment, the existing risk early-warning methods cannot ensure high-precision early warning. A high-accuracy metro pit collapse risk fusion early-warning method is proposed in present study. The main contributions include (1) presenting a...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiajia Zeng, Bo Wu, Cong Liu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/7571
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Considering the complexity of the metro pit construction environment, the existing risk early-warning methods cannot ensure high-precision early warning. A high-accuracy metro pit collapse risk fusion early-warning method is proposed in present study. The main contributions include (1) presenting a new input to the fusion model by optimizing the machine learning model through a multi-step rolling method, and then using the basic probability assignment values obtained from the cloud model as input to the fusion model and (2) developing an improved methodology to address the paradoxical results of the fusion of traditional Dempster–Shafer evidence theory when there is a high level of conflict in multi-source risk prediction data. The proposed method is successfully applied to the Guangzhou Metro station project. By analyzing the early-warning results of 240 moments in 6 monitoring points, compared with the single information source method and the traditional D-S method, the early-warning accuracy of this method is increased by 15.8% and 10.8% respectively, the false alarm rate is reduced by 6.3% and 5.5%, respectively, and the missed alarm rate is reduced by 9.5% and 5.3%, respectively. The high-accuracy fusion early-warning method proposed in this paper has good universality and effectiveness in the early warning of subway foundation pit collapse risk.
ISSN:2076-3417