The Impact of Acoustic Synthetic Jet Actuator Parameters on the Generated Noise

Synthetic jet actuators are becoming increasingly popular for enhancing electronic heat transfer. However, their use is currently limited due to the high noise they generate. This article examines how actuator parameters (orifice diameter, orifice length and cavity height) affect synthetic jet veloc...

Full description

Saved in:
Bibliographic Details
Main Authors: Emil Smyk, Michał Stopel
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/16/7/803
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synthetic jet actuators are becoming increasingly popular for enhancing electronic heat transfer. However, their use is currently limited due to the high noise they generate. This article examines how actuator parameters (orifice diameter, orifice length and cavity height) affect synthetic jet velocity and noise generation. Hot-wire anemometry was used to measure velocity, and noise was measured with a sound meter. The actuator was supplied with constant power at different frequencies ranging from 50 to 500 Hz. Observation of the velocity showed that it decreased with an increasing orifice diameter and increased with a decreasing orifice length. No relationship was observed between cavity height and synthetic jet velocity. This article indicates that increasing the orifice diameter or reducing the orifice length causes an increase in the noise generated by SJAs, provided we remain in the vicinity of the characteristic frequency. It was demonstrated that higher actuator chambers produce higher noise levels, although this was not a consistent trend across the entire tested frequency range.
ISSN:2072-666X