Image-based mandibular and maxillary parcellation and annotation using computed tomography (IMPACT): a deep learning-based clinical tool for orodental dose estimation and osteoradionecrosis assessment

Background and purpose: Accurate delineation of orodental structures on radiotherapy computed tomography (CT) images is essential for dosimetric assessment and dental decisions. We propose a deep-learning (DL) auto-segmentation framework for individual teeth and mandible/maxilla sub-volumes aligned...

Full description

Saved in:
Bibliographic Details
Main Authors: Laia Humbert-Vidan, Austin H. Castelo, Renjie He, Lisanne V. van Dijk, Dong Joo Rhee, Congjun Wang, He C. Wang, Kareem A. Wahid, Sonali Joshi, Parshan Gerafian, Natalie West, Zaphanlene Kaffey, Sarah Mirbahaeddin, Jaqueline Curiel, Samrina Acharya, Amal Shekha, Praise Oderinde, Alaa M.S. Ali, Andrew Hope, Erin Watson, Ruth Wesson-Aponte, Steven J. Frank, Carly E.A. Barbon, Kristy K. Brock, Mark S. Chambers, Muhammad Walji, Katherine A. Hutcheson, Stephen Y. Lai, Clifton D. Fuller, Mohamed A. Naser, Amy C. Moreno
Format: Article
Language:English
Published: Elsevier 2025-07-01
Series:Physics and Imaging in Radiation Oncology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405631625001228
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849228349242605568
author Laia Humbert-Vidan
Austin H. Castelo
Renjie He
Lisanne V. van Dijk
Dong Joo Rhee
Congjun Wang
He C. Wang
Kareem A. Wahid
Sonali Joshi
Parshan Gerafian
Natalie West
Zaphanlene Kaffey
Sarah Mirbahaeddin
Jaqueline Curiel
Samrina Acharya
Amal Shekha
Praise Oderinde
Alaa M.S. Ali
Andrew Hope
Erin Watson
Ruth Wesson-Aponte
Steven J. Frank
Carly E.A. Barbon
Kristy K. Brock
Mark S. Chambers
Muhammad Walji
Katherine A. Hutcheson
Stephen Y. Lai
Clifton D. Fuller
Mohamed A. Naser
Amy C. Moreno
Renjie He
Steven J. Frank
Carly E.A. Barbon
Kristy K. Brock
Mark S. Chambers
Katherine A. Hutcheson
Stephen Y. Lai
Clifton D. Fuller
Mohamed A. Naser
Amy C. Moreno
Laia Humbert-Vidan
Renjie He
Kareem A. Wahid
Natalie West
Zaphanlene Kaffey
Alaa M.S. Ali
Ruth Wesson-Aponte
Carly E.A. Barbon
Mark S. Chambers
Katherine A. Hutcheson
Stephen Y. Lai
Clifton D. Fuller
Mohamed A. Naser
Amy C. Moreno
author_facet Laia Humbert-Vidan
Austin H. Castelo
Renjie He
Lisanne V. van Dijk
Dong Joo Rhee
Congjun Wang
He C. Wang
Kareem A. Wahid
Sonali Joshi
Parshan Gerafian
Natalie West
Zaphanlene Kaffey
Sarah Mirbahaeddin
Jaqueline Curiel
Samrina Acharya
Amal Shekha
Praise Oderinde
Alaa M.S. Ali
Andrew Hope
Erin Watson
Ruth Wesson-Aponte
Steven J. Frank
Carly E.A. Barbon
Kristy K. Brock
Mark S. Chambers
Muhammad Walji
Katherine A. Hutcheson
Stephen Y. Lai
Clifton D. Fuller
Mohamed A. Naser
Amy C. Moreno
Renjie He
Steven J. Frank
Carly E.A. Barbon
Kristy K. Brock
Mark S. Chambers
Katherine A. Hutcheson
Stephen Y. Lai
Clifton D. Fuller
Mohamed A. Naser
Amy C. Moreno
Laia Humbert-Vidan
Renjie He
Kareem A. Wahid
Natalie West
Zaphanlene Kaffey
Alaa M.S. Ali
Ruth Wesson-Aponte
Carly E.A. Barbon
Mark S. Chambers
Katherine A. Hutcheson
Stephen Y. Lai
Clifton D. Fuller
Mohamed A. Naser
Amy C. Moreno
author_sort Laia Humbert-Vidan
collection DOAJ
description Background and purpose: Accurate delineation of orodental structures on radiotherapy computed tomography (CT) images is essential for dosimetric assessment and dental decisions. We propose a deep-learning (DL) auto-segmentation framework for individual teeth and mandible/maxilla sub-volumes aligned with the ClinRad osteoradionecrosis staging system. Materials and methods: Mandible and maxilla sub-volumes were manually defined on simulation CT images from 60 clinical cases, differentiating alveolar from basal regions; teeth were labelled individually. For each task, a DL segmentation model was independently trained. A Swin UNETR-based model was used for mandible sub-volumes. For smaller structures (e.g., teeth and maxilla sub-volumes) a two-stage model first used the ResUNet to segment the entire teeth and maxilla regions as a single ROI used to crop the image input for Swin UNETR. In addition to segmentation accuracy and geometric precision, a dose-volume comparison was made between manual and model-predicted segmentations. Results: Segmentation performance varied across sub-volumes – mean Dice values of 0.85 (mandible basal), 0.82 (mandible alveolar), 0.78 (maxilla alveolar), 0.80 (upper central teeth), 0.69 (upper premolars), 0.76 (upper molars), 0.76 (lower central teeth), 0.70 (lower premolars), 0.71 (lower molars) – with limited applicability in segmenting sub-volumes absent in the data. The maxilla alveolar central sub-volume showed a statistically significant dose-volume difference in both Dmean and D2%. Conclusions: We present a novel DL-based auto-segmentation framework of orodental structures, enabling spatial localization of dose-related differences. This tool may enhance image-based bone injury detection and improve clinical decision-making in radiation oncology and dental care for head and neck cancer patients.
format Article
id doaj-art-1bbbbd654ba44d6da871b0e5f3724db4
institution Kabale University
issn 2405-6316
language English
publishDate 2025-07-01
publisher Elsevier
record_format Article
series Physics and Imaging in Radiation Oncology
spelling doaj-art-1bbbbd654ba44d6da871b0e5f3724db42025-08-23T04:48:44ZengElsevierPhysics and Imaging in Radiation Oncology2405-63162025-07-013510081710.1016/j.phro.2025.100817Image-based mandibular and maxillary parcellation and annotation using computed tomography (IMPACT): a deep learning-based clinical tool for orodental dose estimation and osteoradionecrosis assessmentLaia Humbert-Vidan0Austin H. Castelo1Renjie He2Lisanne V. van Dijk3Dong Joo Rhee4Congjun Wang5He C. Wang6Kareem A. Wahid7Sonali Joshi8Parshan Gerafian9Natalie West10Zaphanlene Kaffey11Sarah Mirbahaeddin12Jaqueline Curiel13Samrina Acharya14Amal Shekha15Praise Oderinde16Alaa M.S. Ali17Andrew Hope18Erin Watson19Ruth Wesson-Aponte20Steven J. Frank21Carly E.A. Barbon22Kristy K. Brock23Mark S. Chambers24Muhammad Walji25Katherine A. Hutcheson26Stephen Y. Lai27Clifton D. Fuller28Mohamed A. Naser29Amy C. Moreno30Renjie He31Steven J. Frank32Carly E.A. Barbon33Kristy K. Brock34Mark S. Chambers35Katherine A. Hutcheson36Stephen Y. Lai37Clifton D. Fuller38Mohamed A. Naser39Amy C. Moreno40Laia Humbert-Vidan41Renjie He42Kareem A. Wahid43Natalie West44Zaphanlene Kaffey45Alaa M.S. Ali46Ruth Wesson-Aponte47Carly E.A. Barbon48Mark S. Chambers49Katherine A. Hutcheson50Stephen Y. Lai51Clifton D. Fuller52Mohamed A. Naser53Amy C. Moreno54Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Radiation Oncology, University Medical Center Groningen, Groningen, NetherlandsDepartment of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Radiation Oncology, Princess Margaret Cancer Center, Toronto, CA, USADepartment of Dental Oncology, Princess Margaret Cancer Center, Toronto, CA, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Clinical and Health Informatics, Texas Center of Oral Health Care Quality & Safety, Houston, TX, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Corresponding author at: H&N Service, Department of Radiation Oncology, UT MD Anderson Cancer Center, USA.Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADepartment of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USADivision of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USABackground and purpose: Accurate delineation of orodental structures on radiotherapy computed tomography (CT) images is essential for dosimetric assessment and dental decisions. We propose a deep-learning (DL) auto-segmentation framework for individual teeth and mandible/maxilla sub-volumes aligned with the ClinRad osteoradionecrosis staging system. Materials and methods: Mandible and maxilla sub-volumes were manually defined on simulation CT images from 60 clinical cases, differentiating alveolar from basal regions; teeth were labelled individually. For each task, a DL segmentation model was independently trained. A Swin UNETR-based model was used for mandible sub-volumes. For smaller structures (e.g., teeth and maxilla sub-volumes) a two-stage model first used the ResUNet to segment the entire teeth and maxilla regions as a single ROI used to crop the image input for Swin UNETR. In addition to segmentation accuracy and geometric precision, a dose-volume comparison was made between manual and model-predicted segmentations. Results: Segmentation performance varied across sub-volumes – mean Dice values of 0.85 (mandible basal), 0.82 (mandible alveolar), 0.78 (maxilla alveolar), 0.80 (upper central teeth), 0.69 (upper premolars), 0.76 (upper molars), 0.76 (lower central teeth), 0.70 (lower premolars), 0.71 (lower molars) – with limited applicability in segmenting sub-volumes absent in the data. The maxilla alveolar central sub-volume showed a statistically significant dose-volume difference in both Dmean and D2%. Conclusions: We present a novel DL-based auto-segmentation framework of orodental structures, enabling spatial localization of dose-related differences. This tool may enhance image-based bone injury detection and improve clinical decision-making in radiation oncology and dental care for head and neck cancer patients.http://www.sciencedirect.com/science/article/pii/S2405631625001228Head and neck cancerRadiotherapyDeep-learning auto-segmentation modelsOrodental structuresOsteoradionecrosis
spellingShingle Laia Humbert-Vidan
Austin H. Castelo
Renjie He
Lisanne V. van Dijk
Dong Joo Rhee
Congjun Wang
He C. Wang
Kareem A. Wahid
Sonali Joshi
Parshan Gerafian
Natalie West
Zaphanlene Kaffey
Sarah Mirbahaeddin
Jaqueline Curiel
Samrina Acharya
Amal Shekha
Praise Oderinde
Alaa M.S. Ali
Andrew Hope
Erin Watson
Ruth Wesson-Aponte
Steven J. Frank
Carly E.A. Barbon
Kristy K. Brock
Mark S. Chambers
Muhammad Walji
Katherine A. Hutcheson
Stephen Y. Lai
Clifton D. Fuller
Mohamed A. Naser
Amy C. Moreno
Renjie He
Steven J. Frank
Carly E.A. Barbon
Kristy K. Brock
Mark S. Chambers
Katherine A. Hutcheson
Stephen Y. Lai
Clifton D. Fuller
Mohamed A. Naser
Amy C. Moreno
Laia Humbert-Vidan
Renjie He
Kareem A. Wahid
Natalie West
Zaphanlene Kaffey
Alaa M.S. Ali
Ruth Wesson-Aponte
Carly E.A. Barbon
Mark S. Chambers
Katherine A. Hutcheson
Stephen Y. Lai
Clifton D. Fuller
Mohamed A. Naser
Amy C. Moreno
Image-based mandibular and maxillary parcellation and annotation using computed tomography (IMPACT): a deep learning-based clinical tool for orodental dose estimation and osteoradionecrosis assessment
Physics and Imaging in Radiation Oncology
Head and neck cancer
Radiotherapy
Deep-learning auto-segmentation models
Orodental structures
Osteoradionecrosis
title Image-based mandibular and maxillary parcellation and annotation using computed tomography (IMPACT): a deep learning-based clinical tool for orodental dose estimation and osteoradionecrosis assessment
title_full Image-based mandibular and maxillary parcellation and annotation using computed tomography (IMPACT): a deep learning-based clinical tool for orodental dose estimation and osteoradionecrosis assessment
title_fullStr Image-based mandibular and maxillary parcellation and annotation using computed tomography (IMPACT): a deep learning-based clinical tool for orodental dose estimation and osteoradionecrosis assessment
title_full_unstemmed Image-based mandibular and maxillary parcellation and annotation using computed tomography (IMPACT): a deep learning-based clinical tool for orodental dose estimation and osteoradionecrosis assessment
title_short Image-based mandibular and maxillary parcellation and annotation using computed tomography (IMPACT): a deep learning-based clinical tool for orodental dose estimation and osteoradionecrosis assessment
title_sort image based mandibular and maxillary parcellation and annotation using computed tomography impact a deep learning based clinical tool for orodental dose estimation and osteoradionecrosis assessment
topic Head and neck cancer
Radiotherapy
Deep-learning auto-segmentation models
Orodental structures
Osteoradionecrosis
url http://www.sciencedirect.com/science/article/pii/S2405631625001228
work_keys_str_mv AT laiahumbertvidan imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT austinhcastelo imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT renjiehe imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT lisannevvandijk imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT dongjoorhee imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT congjunwang imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT hecwang imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT kareemawahid imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT sonalijoshi imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT parshangerafian imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT nataliewest imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT zaphanlenekaffey imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT sarahmirbahaeddin imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT jaquelinecuriel imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT samrinaacharya imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT amalshekha imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT praiseoderinde imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT alaamsali imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT andrewhope imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT erinwatson imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT ruthwessonaponte imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT stevenjfrank imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT carlyeabarbon imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT kristykbrock imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT markschambers imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT muhammadwalji imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT katherineahutcheson imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT stephenylai imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT cliftondfuller imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT mohamedanaser imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT amycmoreno imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT renjiehe imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT stevenjfrank imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT carlyeabarbon imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT kristykbrock imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT markschambers imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT katherineahutcheson imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT stephenylai imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT cliftondfuller imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT mohamedanaser imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT amycmoreno imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT laiahumbertvidan imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT renjiehe imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT kareemawahid imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT nataliewest imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT zaphanlenekaffey imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT alaamsali imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT ruthwessonaponte imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT carlyeabarbon imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT markschambers imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT katherineahutcheson imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT stephenylai imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT cliftondfuller imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT mohamedanaser imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment
AT amycmoreno imagebasedmandibularandmaxillaryparcellationandannotationusingcomputedtomographyimpactadeeplearningbasedclinicaltoolfororodentaldoseestimationandosteoradionecrosisassessment