Characterization of Submesoscale Turbulence in the East/Japan Sea Using Geostationary Ocean Color Satellite Images
Abstract Submesoscale processes are key in understanding physical and biological phenomena near the surface, but there remains a lack of observational evidence over large areas. We used hourly images from a geostationary satellite that can resolve variation in surface ocean color over an area of few...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2019-07-01
|
| Series: | Geophysical Research Letters |
| Subjects: | |
| Online Access: | https://doi.org/10.1029/2019GL083892 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Submesoscale processes are key in understanding physical and biological phenomena near the surface, but there remains a lack of observational evidence over large areas. We used hourly images from a geostationary satellite that can resolve variation in surface ocean color over an area of few hundred kilometers. The temporal variation in the surface chlorophyll a distribution captured by the satellite images was first used to generate a submesoscale‐permitting velocity field, from which we calculated the turbulence statistics such as kinetic energy spectra, velocity structure functions, and energy flux. Application to the April scenes in the East/Japan Sea showed that the kinetic energy spectra had a transition scale at 50 km that suggested two spectral regimes following k−3 and k−5/3, implying the coexistence of quasi‐geostrophic turbulence and surface quasi‐geostrophic turbulence. The chlorophyll a scalar spectrum suggested two spectral regimes of k−5/3 and k−1 with a transition at 3 km. |
|---|---|
| ISSN: | 0094-8276 1944-8007 |