$R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission
In this paper, we study an age-structured SIS epidemic model with periodicity and vertical transmission. We show that the spectral radius of the Fréchet derivative of a nonlinear integral operator plays the role of a threshold value for the global behavior of the model, that is, if the value is less...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2014-02-01
|
Series: | Mathematical Biosciences and Engineering |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/mbe.2014.11.929 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we study an age-structured SIS epidemic model with periodicity and vertical transmission. We show that the spectral radius of the Fréchet derivative of a nonlinear integral operator plays the role of a threshold value for the global behavior of the model, that is, if the value is less than unity, then the disease-free steady state of the model is globally asymptotically stable, while if the value is greater than unity, then the model has a unique globally asymptotically stable endemic (nontrivial) periodic solution. We also show that the value can coincide with the well-know epidemiological threshold value, the basic reproduction number $\mathcal{R}_0$. |
---|---|
ISSN: | 1551-0018 |