Polymorphism of <i>Sdr</i> genes regulating seed dormancy in <i>Triticum persicum</i> Vav. and <i>Triticum aethiopicum</i> Jakubz.

Preharvest sprouting of wheat grain, sporadically observed in many regions of cultivation of this crop, leads to deterioration of its food and sowing qualities. Seed dormancy is considered to be the main component of resistance to preharvest sprouting. This physiological state of seeds is regulated...

Full description

Saved in:
Bibliographic Details
Main Authors: M. S. Bazhenov, E. D. Guseva, V. S. Rubets
Format: Article
Language:English
Published: Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders 2020-01-01
Series:Вавиловский журнал генетики и селекции
Subjects:
Online Access:https://vavilov.elpub.ru/jour/article/view/2389
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832575138993799168
author M. S. Bazhenov
E. D. Guseva
V. S. Rubets
author_facet M. S. Bazhenov
E. D. Guseva
V. S. Rubets
author_sort M. S. Bazhenov
collection DOAJ
description Preharvest sprouting of wheat grain, sporadically observed in many regions of cultivation of this crop, leads to deterioration of its food and sowing qualities. Seed dormancy is considered to be the main component of resistance to preharvest sprouting. This physiological state of seeds is regulated by many genes, and it depends heavily on environmental conditions. One of the regulators of seed dormancy in cereals is the Sdr4 gene (Seed dormancy 4), which was first studied in rice. In common wheat, the homologues of this gene (TaSdr-A1 and TaSdr-B1) are also involved in the regulation of seed dormancy. The search for valuable alleles in local varieties and endemic forms is a promising area of research aimed at increasing the resistance of crops to adverse environmental factors. In this study, Sdr genes were sequenced in several accessions of two tetraploid wheat species with limited cultivation areas: Persian wheat (Triticum persicum Vav.) and Ethiopian wheat (Triticum aethiopicum Jakubz.). As a result, the same Sdr-A1 and Sdr-B1 variants that had been found in common wheat were detected in these species. The Persian wheat accessions possessed only the Sdr-A1a allele, while Ethiopian ones, only Sdr-A1b. The analysis of F2 hybrids obtained from crossing these tetraploid species showed that the Sdr-A1b allele was associated with a lower germination index of grains than Sdr-A1a. This result was inconsistent with earlier association studies. Previously unknown polymorphisms were found in the promoter of the Sdr-B1 gene in the studied accessions. A deletion of 16 nucleotides was detected in the 3’-terminal region of the TraesCS2B02G215200 gene, located on the complementary DNA chain close to the 3’-end of the Sdr-B1 gene. Possible effects of the detected polymorphisms on the expression of Sdr genes are discussed.
format Article
id doaj-art-1b5810b2d18e4fbdbcaf3388a7acc608
institution Kabale University
issn 2500-3259
language English
publishDate 2020-01-01
publisher Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders
record_format Article
series Вавиловский журнал генетики и селекции
spelling doaj-art-1b5810b2d18e4fbdbcaf3388a7acc6082025-02-01T09:58:08ZengSiberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and BreedersВавиловский журнал генетики и селекции2500-32592020-01-0123896497110.18699/VJ19.573998Polymorphism of <i>Sdr</i> genes regulating seed dormancy in <i>Triticum persicum</i> Vav. and <i>Triticum aethiopicum</i> Jakubz.M. S. Bazhenov0E. D. Guseva1V. S. Rubets2Russian State Agrarian University – Moscow Timiryazev Agricultural Academy; All-Russia Research Institute of Agricultural BiotechnologyRussian State Agrarian University – Moscow Timiryazev Agricultural AcademyRussian State Agrarian University – Moscow Timiryazev Agricultural AcademyPreharvest sprouting of wheat grain, sporadically observed in many regions of cultivation of this crop, leads to deterioration of its food and sowing qualities. Seed dormancy is considered to be the main component of resistance to preharvest sprouting. This physiological state of seeds is regulated by many genes, and it depends heavily on environmental conditions. One of the regulators of seed dormancy in cereals is the Sdr4 gene (Seed dormancy 4), which was first studied in rice. In common wheat, the homologues of this gene (TaSdr-A1 and TaSdr-B1) are also involved in the regulation of seed dormancy. The search for valuable alleles in local varieties and endemic forms is a promising area of research aimed at increasing the resistance of crops to adverse environmental factors. In this study, Sdr genes were sequenced in several accessions of two tetraploid wheat species with limited cultivation areas: Persian wheat (Triticum persicum Vav.) and Ethiopian wheat (Triticum aethiopicum Jakubz.). As a result, the same Sdr-A1 and Sdr-B1 variants that had been found in common wheat were detected in these species. The Persian wheat accessions possessed only the Sdr-A1a allele, while Ethiopian ones, only Sdr-A1b. The analysis of F2 hybrids obtained from crossing these tetraploid species showed that the Sdr-A1b allele was associated with a lower germination index of grains than Sdr-A1a. This result was inconsistent with earlier association studies. Previously unknown polymorphisms were found in the promoter of the Sdr-B1 gene in the studied accessions. A deletion of 16 nucleotides was detected in the 3’-terminal region of the TraesCS2B02G215200 gene, located on the complementary DNA chain close to the 3’-end of the Sdr-B1 gene. Possible effects of the detected polymorphisms on the expression of Sdr genes are discussed.https://vavilov.elpub.ru/jour/article/view/2389preharvest sproutingtetraploid wheatsmarkersinterspecific hybridizationsequencing
spellingShingle M. S. Bazhenov
E. D. Guseva
V. S. Rubets
Polymorphism of <i>Sdr</i> genes regulating seed dormancy in <i>Triticum persicum</i> Vav. and <i>Triticum aethiopicum</i> Jakubz.
Вавиловский журнал генетики и селекции
preharvest sprouting
tetraploid wheats
markers
interspecific hybridization
sequencing
title Polymorphism of <i>Sdr</i> genes regulating seed dormancy in <i>Triticum persicum</i> Vav. and <i>Triticum aethiopicum</i> Jakubz.
title_full Polymorphism of <i>Sdr</i> genes regulating seed dormancy in <i>Triticum persicum</i> Vav. and <i>Triticum aethiopicum</i> Jakubz.
title_fullStr Polymorphism of <i>Sdr</i> genes regulating seed dormancy in <i>Triticum persicum</i> Vav. and <i>Triticum aethiopicum</i> Jakubz.
title_full_unstemmed Polymorphism of <i>Sdr</i> genes regulating seed dormancy in <i>Triticum persicum</i> Vav. and <i>Triticum aethiopicum</i> Jakubz.
title_short Polymorphism of <i>Sdr</i> genes regulating seed dormancy in <i>Triticum persicum</i> Vav. and <i>Triticum aethiopicum</i> Jakubz.
title_sort polymorphism of i sdr i genes regulating seed dormancy in i triticum persicum i vav and i triticum aethiopicum i jakubz
topic preharvest sprouting
tetraploid wheats
markers
interspecific hybridization
sequencing
url https://vavilov.elpub.ru/jour/article/view/2389
work_keys_str_mv AT msbazhenov polymorphismofisdrigenesregulatingseeddormancyinitriticumpersicumivavanditriticumaethiopicumijakubz
AT edguseva polymorphismofisdrigenesregulatingseeddormancyinitriticumpersicumivavanditriticumaethiopicumijakubz
AT vsrubets polymorphismofisdrigenesregulatingseeddormancyinitriticumpersicumivavanditriticumaethiopicumijakubz