UAV-Based Automatic Detection of Missing Rice Seedlings Using the PCERT-DETR Model

Due to the limitations of the sowing machine performance and rice seed germination rates, missing seedlings inevitably occur after rice is sown in large fields. This phenomenon has a direct impact on the rice yield. In the field environment, the existing methods for detecting missing seedlings based...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiaxin Gao, Feng Tan, Zhaolong Hou, Xiaohui Li, Ailin Feng, Jiaxin Li, Feiyu Bi
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/14/14/2156
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the limitations of the sowing machine performance and rice seed germination rates, missing seedlings inevitably occur after rice is sown in large fields. This phenomenon has a direct impact on the rice yield. In the field environment, the existing methods for detecting missing seedlings based on unmanned aerial vehicle (UAV) remote sensing images often have unsatisfactory effects. Therefore, to enable the fast and accurate detection of missing rice seedlings and facilitate subsequent reseeding, this study proposes a UAV remote-sensing-based method for detecting missing rice seedlings in large fields. The proposed method uses an improved PCERT-DETR model to detect rice seedlings and missing seedlings in UAV remote sensing images of large fields. The experimental results show that PCERT-DETR achieves an optimal performance on the self-constructed dataset, with an mean average precision (mAP) of 81.2%, precision (P) of 82.8%, recall (R) of 78.3%, and F<sub>1</sub>-score (F<sub>1</sub>) of 80.5%. The model’s parameter count is only 21.4 M and its FLOPs reach 66.6 G, meeting real-time detection requirements. Compared to the baseline network models, PCERT-DETR improves the P, R, F<sub>1</sub>, and mAP by 15.0, 1.2, 8.5, and 6.8 percentage points, respectively. Furthermore, the performance evaluation experiments were carried out through ablation experiments, comparative detection model experiments and heat map visualization analysis, indicating that the model has a strong detection performance on the test set. The results confirm that the proposed model can accurately detect the number of missing rice seedlings. This study provides accurate information on the number of missing seedlings for subsequent reseeding operations, thus contributing to the improvement of precision farming practices.
ISSN:2223-7747