RecyBat24: a dataset for detecting lithium-ion batteries in electronic waste disposal
Abstract In recent years, deep learning techniques have been extensively used for the identification and classification of lithium-ion batteries. However, these models typically require a costly and labor-intensive labeling process, often influenced by commercial or proprietary concerns. In this stu...
Saved in:
| Main Authors: | Ximena Carolina Acaro Chacón, Fabrizio Lo Scudo, Gregorio Cappuccino, Carmine Dodaro |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-05-01
|
| Series: | Scientific Data |
| Online Access: | https://doi.org/10.1038/s41597-025-05211-5 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Vladislav Suvák: Umenie reči medzi sofistikou a sokratikou
by: Marcel Forgáč
Published: (2025-05-01) -
Influence of the rotation angles on the mechanical behavior of the one reci instrument
by: Renaud Giess, et al.
Published: (2025-04-01) -
I.B. Levontina, Časticy reči, Azbukovnik, Moskva 2022, pp. 431.
by: Paola Cotta Ramusino
Published: (2025-07-01) -
Stimulácia reči na základe aktuálnych výskumov a princípov Montessori pedagogiky
by: Matej Slováček
Published: (2024-12-01) -
Assessing the environmental impact and risks associated with uncontrolled disposal of end-of-life lithium-ion batteries on soil
by: Preeti Mishra, et al.
Published: (2025-12-01)