Quantitative Assessment of Road Dust Suspension Based on Variations in Asphalt Pavement Surface Texture
This study explores the correlation between road surface texture, including microtexture (texture depth) and macrotexture (wavelength) in asphalt pavement, and suspended dust generation on asphalt pavements. A detailed analysis of various pavement types, including Hot Mix Asphalt (HMA) and porous pa...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Atmosphere |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2073-4433/16/5/552 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study explores the correlation between road surface texture, including microtexture (texture depth) and macrotexture (wavelength) in asphalt pavement, and suspended dust generation on asphalt pavements. A detailed analysis of various pavement types, including Hot Mix Asphalt (HMA) and porous pavement, was conducted to assess their impact on dust load and concentration. For HMA pavements, deeper texture depths led to a higher dust load and concentration, attributed to the impermeable nature of the material, which causes dust to become easily suspended in the air. Conversely, porous pavements, which have air gaps in their surface layers, showed reduced dust suspension despite a higher dust load, due to the ability of these voids to trap dust and minimize air-pumping effects from tire–road contact. The study found that a macrotexture depth (MTD) exceeding 1.7 mm stabilized dust concentration, while higher surface wavelengths and silt load (sL) values above 0.1 g/m<sup>2</sup> significantly contributed to dust suspension. These findings suggest that optimizing road surface texture and aggregate size, considering the voids and depth, can help reduce suspended dust, providing a balance between road safety and environmental management. This research offers valuable insights for designing pavements that mitigate air pollution while maintaining functional performance. |
|---|---|
| ISSN: | 2073-4433 |