Multi-Objective Optimization Design of Ship Propulsion Shafting Based on Response Surface Methodology and Genetic Algorithm

In order to reduce the power loss of the transmission equipment, enhance the transmission efficiency of the propulsion shafting, and improve the vibration performance of the shafting, a multi-objective optimization design of a ship shafting experimental platform is performed based on the response su...

Full description

Saved in:
Bibliographic Details
Main Author: ZHANG Cong, SHU Bingnan, ZHANG Jiangtao, JIN Yong
Format: Article
Language:zho
Published: Editorial Office of Journal of Shanghai Jiao Tong University 2025-04-01
Series:Shanghai Jiaotong Daxue xuebao
Subjects:
Online Access:https://xuebao.sjtu.edu.cn/article/2025/1006-2467/1006-2467-59-4-466.shtml
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to reduce the power loss of the transmission equipment, enhance the transmission efficiency of the propulsion shafting, and improve the vibration performance of the shafting, a multi-objective optimization design of a ship shafting experimental platform is performed based on the response surface model and genetic algorithm. The central composite design (CCD) method is used to select appropriate experimental points in the optimized design space, and the response surface model is developed with minimum total power consumption and vibration response amplitude. Based on the genetic algorithm, the Pareto optimal solution of response surface model regression function is solved through MATLAB software. The optimal design scheme is obtained by comparing and analyzing several groups of optimization results. The results show that the combined method can reduce the power loss of shafting by approximate 7.10% and reduce the vibration amplitude of shafting by 2.30%, while significantly improving the shafting transmission efficiency and effectively suppressing the vibration problem of propulsion shafting. The fiudings validate the feasibility of the multi-objective optimization method for the ship propulsion shafting.
ISSN:1006-2467