Benchmarking shoreline prediction models over multi-decadal timescales

Abstract Robust predictions of shoreline change are critical for sustainable coastal management. Despite advancements in shoreline models, objective benchmarking remains limited. Here we present results from ShoreShop2.0, an international collaborative benchmarking workshop, where 34 groups submitte...

Full description

Saved in:
Bibliographic Details
Main Authors: Yongjing Mao, Giovanni Coco, Sean Vitousek, Jose A. A. Antolinez, Georgios Azorakos, Masayuki Banno, Clément Bouvier, Karin R. Bryan, Laura Cagigal, Kit Calcraft, Bruno Castelle, Xinyu Chen, Maurizio D’Anna, Lucas de Freitas Pereira, Iñaki de Santiago, Aditya N. Deshmukh, Bixuan Dong, Ahmed Elghandour, Amirmahdi Gohari, Eduardo Gomez-de la Peña, Mitchell D. Harley, Michael Ibrahim, Déborah Idier, Camilo Jaramillo Cardona, Changbin Lim, Ivana Mingo, Julian O’Grady, Daniel Pais, Oxana Repina, Arthur Robinet, Dano Roelvink, Joshua Simmons, Erdinc Sogut, Katie Wilson, Kristen D. Splinter
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Communications Earth & Environment
Online Access:https://doi.org/10.1038/s43247-025-02550-4
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849332095032229888
author Yongjing Mao
Giovanni Coco
Sean Vitousek
Jose A. A. Antolinez
Georgios Azorakos
Masayuki Banno
Clément Bouvier
Karin R. Bryan
Laura Cagigal
Kit Calcraft
Bruno Castelle
Xinyu Chen
Maurizio D’Anna
Lucas de Freitas Pereira
Iñaki de Santiago
Aditya N. Deshmukh
Bixuan Dong
Ahmed Elghandour
Amirmahdi Gohari
Eduardo Gomez-de la Peña
Mitchell D. Harley
Michael Ibrahim
Déborah Idier
Camilo Jaramillo Cardona
Changbin Lim
Ivana Mingo
Julian O’Grady
Daniel Pais
Oxana Repina
Arthur Robinet
Dano Roelvink
Joshua Simmons
Erdinc Sogut
Katie Wilson
Kristen D. Splinter
author_facet Yongjing Mao
Giovanni Coco
Sean Vitousek
Jose A. A. Antolinez
Georgios Azorakos
Masayuki Banno
Clément Bouvier
Karin R. Bryan
Laura Cagigal
Kit Calcraft
Bruno Castelle
Xinyu Chen
Maurizio D’Anna
Lucas de Freitas Pereira
Iñaki de Santiago
Aditya N. Deshmukh
Bixuan Dong
Ahmed Elghandour
Amirmahdi Gohari
Eduardo Gomez-de la Peña
Mitchell D. Harley
Michael Ibrahim
Déborah Idier
Camilo Jaramillo Cardona
Changbin Lim
Ivana Mingo
Julian O’Grady
Daniel Pais
Oxana Repina
Arthur Robinet
Dano Roelvink
Joshua Simmons
Erdinc Sogut
Katie Wilson
Kristen D. Splinter
author_sort Yongjing Mao
collection DOAJ
description Abstract Robust predictions of shoreline change are critical for sustainable coastal management. Despite advancements in shoreline models, objective benchmarking remains limited. Here we present results from ShoreShop2.0, an international collaborative benchmarking workshop, where 34 groups submitted shoreline change predictions in a blind competition. Subsets of shoreline observations at an undisclosed site (BeachX) over short (5-year) and medium (50-year) periods were withheld from modelers and used for model benchmarking. Using satellite-derived shoreline datasets for calibration and evaluation, the best performing models achieved prediction accuracies on the order of 10 m, comparable to the accuracy of the satellite shoreline data, indicating that certain beaches can be modelled nearly as well as they can be remotely observed. The outcomes from this collaborative benchmarking competition critically review the present state-of-the-art in shoreline change prediction as well as reveal model limitations, facilitate improvements, and offer insights for advancing shoreline-prediction capabilities.
format Article
id doaj-art-19a6e481f50841c5a98445d9b7a9ecae
institution Kabale University
issn 2662-4435
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series Communications Earth & Environment
spelling doaj-art-19a6e481f50841c5a98445d9b7a9ecae2025-08-20T03:46:20ZengNature PortfolioCommunications Earth & Environment2662-44352025-07-016111510.1038/s43247-025-02550-4Benchmarking shoreline prediction models over multi-decadal timescalesYongjing Mao0Giovanni Coco1Sean Vitousek2Jose A. A. Antolinez3Georgios Azorakos4Masayuki Banno5Clément Bouvier6Karin R. Bryan7Laura Cagigal8Kit Calcraft9Bruno Castelle10Xinyu Chen11Maurizio D’Anna12Lucas de Freitas Pereira13Iñaki de Santiago14Aditya N. Deshmukh15Bixuan Dong16Ahmed Elghandour17Amirmahdi Gohari18Eduardo Gomez-de la Peña19Mitchell D. Harley20Michael Ibrahim21Déborah Idier22Camilo Jaramillo Cardona23Changbin Lim24Ivana Mingo25Julian O’Grady26Daniel Pais27Oxana Repina28Arthur Robinet29Dano Roelvink30Joshua Simmons31Erdinc Sogut32Katie Wilson33Kristen D. Splinter34Water Research Laboratory, School of Civil and Environmental Engineering, UNSW SydneySchool of Environment, Faculty of Science, University of AucklandU.S. Geological SurveyDepartment of Hydraulic Engineering, Delft University of TechnologyUniversité de Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Alleé Geoffroy Saint-HilairePort and Airport Research InstituteBRGM (French Geological Survey), Parc technologique EuroparcSchool of Environment, Faculty of Science, University of AucklandGeomatics and Ocean Engineering Group, Departamento de Ciencias y Tecnicas del Agua y del Medio Ambiente, Universidad de CantabriaWater Research Laboratory, School of Civil and Environmental Engineering, UNSW SydneyUniversité de Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Alleé Geoffroy Saint-HilairePort and Airport Research InstituteSchool of Environment, Faculty of Science, University of AucklandIHCantabria – Instituto de Hidráulica Ambiental de la Universidad de CantabriaAZTI Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia. Portualdea z/gWater Research Laboratory, School of Civil and Environmental Engineering, UNSW SydneyWater Research Laboratory, School of Civil and Environmental Engineering, UNSW SydneyDepartment of Hydraulic Engineering, Delft University of TechnologySchool of Environment, Faculty of Science, University of AucklandSchool of Environment, Faculty of Science, University of AucklandWater Research Laboratory, School of Civil and Environmental Engineering, UNSW SydneyComputer Engineering Department, Cairo UniversityBRGM (French Geological Survey)IHCantabria – Instituto de Hidráulica Ambiental de la Universidad de CantabriaIHCantabria – Instituto de Hidráulica Ambiental de la Universidad de CantabriaUniversité de Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Alleé Geoffroy Saint-HilaireCSIRO EnvironmentCoLAB+ATLANTIC LVT, Museu das ComunicaçõesCoastal and Marine Research Centre, Griffith University, SouthportBRGM (French Geological Survey), Parc technologique EuroparcDepartment of Hydraulic Engineering, Delft University of TechnologyARC Training Centre in Data Analytics for Resources and Environments (DARE), University of SydneyCherokee Nation System Solutions, Contractor to the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, StWater Research Laboratory, School of Civil and Environmental Engineering, UNSW SydneyWater Research Laboratory, School of Civil and Environmental Engineering, UNSW SydneyAbstract Robust predictions of shoreline change are critical for sustainable coastal management. Despite advancements in shoreline models, objective benchmarking remains limited. Here we present results from ShoreShop2.0, an international collaborative benchmarking workshop, where 34 groups submitted shoreline change predictions in a blind competition. Subsets of shoreline observations at an undisclosed site (BeachX) over short (5-year) and medium (50-year) periods were withheld from modelers and used for model benchmarking. Using satellite-derived shoreline datasets for calibration and evaluation, the best performing models achieved prediction accuracies on the order of 10 m, comparable to the accuracy of the satellite shoreline data, indicating that certain beaches can be modelled nearly as well as they can be remotely observed. The outcomes from this collaborative benchmarking competition critically review the present state-of-the-art in shoreline change prediction as well as reveal model limitations, facilitate improvements, and offer insights for advancing shoreline-prediction capabilities.https://doi.org/10.1038/s43247-025-02550-4
spellingShingle Yongjing Mao
Giovanni Coco
Sean Vitousek
Jose A. A. Antolinez
Georgios Azorakos
Masayuki Banno
Clément Bouvier
Karin R. Bryan
Laura Cagigal
Kit Calcraft
Bruno Castelle
Xinyu Chen
Maurizio D’Anna
Lucas de Freitas Pereira
Iñaki de Santiago
Aditya N. Deshmukh
Bixuan Dong
Ahmed Elghandour
Amirmahdi Gohari
Eduardo Gomez-de la Peña
Mitchell D. Harley
Michael Ibrahim
Déborah Idier
Camilo Jaramillo Cardona
Changbin Lim
Ivana Mingo
Julian O’Grady
Daniel Pais
Oxana Repina
Arthur Robinet
Dano Roelvink
Joshua Simmons
Erdinc Sogut
Katie Wilson
Kristen D. Splinter
Benchmarking shoreline prediction models over multi-decadal timescales
Communications Earth & Environment
title Benchmarking shoreline prediction models over multi-decadal timescales
title_full Benchmarking shoreline prediction models over multi-decadal timescales
title_fullStr Benchmarking shoreline prediction models over multi-decadal timescales
title_full_unstemmed Benchmarking shoreline prediction models over multi-decadal timescales
title_short Benchmarking shoreline prediction models over multi-decadal timescales
title_sort benchmarking shoreline prediction models over multi decadal timescales
url https://doi.org/10.1038/s43247-025-02550-4
work_keys_str_mv AT yongjingmao benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT giovannicoco benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT seanvitousek benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT joseaaantolinez benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT georgiosazorakos benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT masayukibanno benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT clementbouvier benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT karinrbryan benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT lauracagigal benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT kitcalcraft benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT brunocastelle benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT xinyuchen benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT mauriziodanna benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT lucasdefreitaspereira benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT inakidesantiago benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT adityandeshmukh benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT bixuandong benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT ahmedelghandour benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT amirmahdigohari benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT eduardogomezdelapena benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT mitchelldharley benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT michaelibrahim benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT deborahidier benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT camilojaramillocardona benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT changbinlim benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT ivanamingo benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT julianogrady benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT danielpais benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT oxanarepina benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT arthurrobinet benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT danoroelvink benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT joshuasimmons benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT erdincsogut benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT katiewilson benchmarkingshorelinepredictionmodelsovermultidecadaltimescales
AT kristendsplinter benchmarkingshorelinepredictionmodelsovermultidecadaltimescales