Short-range charge transfer for efficient ultra-narrowband deep blue afterglow
Abstract Efficient and narrowband blue organic afterglow materials are critical components for advanced optoelectronic applications, but so far, have been rarely explored. Herein, we report short-range charge transfer-assisted high efficiency and ultra-narrowband deep blue (<450 nm) afterglow fro...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-61513-7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Efficient and narrowband blue organic afterglow materials are critical components for advanced optoelectronic applications, but so far, have been rarely explored. Herein, we report short-range charge transfer-assisted high efficiency and ultra-narrowband deep blue (<450 nm) afterglow from a series of indolocarbazole-based chromophores. The short-range charge transfer within the fused π-conjugated frameworks enlarges the singlet-triplet energy gap and suppresses vibronic coupling and structural relaxations, thus leading to a slow reverse intersystem crossing rate, a long delayed-fluorescence lifetime of up to 186.48 ms and a high photoluminescence quantum yield of 86.1%. Notably, these afterglow emitters exhibit ultra-narrow full width at half maximum of 18 nm, presenting high colour purity with y colour coordinates below 0.05. Taking advantage of these unique afterglow features, the potential for encrypted light communications and high-resolution afterglow displays are demonstrated. This work not only provides an effective strategy for developing narrowband organic afterglow materials but also extends their applications to advanced fields. |
|---|---|
| ISSN: | 2041-1723 |