The forms of $ (q, h) $-difference equation and the roots structure of their solutions with degenerate quantum Genocchi polynomials

We construct a new type of Genocchi polynomials using degenerate quantum exponential functions and find various forms of $ (q, h) $-difference equations with these polynomials as solutions. This paper includes properties of the symmetric structures of $ (q, h) $-difference equations and also present...

Full description

Saved in:
Bibliographic Details
Main Authors: Jung Yoog Kang, Cheon Seoung Ryoo
Format: Article
Language:English
Published: AIMS Press 2024-10-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20241436?viewType=HTML
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We construct a new type of Genocchi polynomials using degenerate quantum exponential functions and find various forms of $ (q, h) $-difference equations with these polynomials as solutions. This paper includes properties of the symmetric structures of $ (q, h) $-difference equations and also presents $ (q, h) $-difference equations with other polynomials as coefficients. By understanding the approximate roots structure of degenerate quantum Genocchi polynomials (DQG), which are common solutions to various forms of $ (q, h) $-difference equations, we identify the properties of the solutions.
ISSN:2473-6988