New Stability Tests for Discretized Fractional-Order Systems Using the Al-Alaoui and Tustin Operators
This paper provides new results on a stable discretization of commensurate fractional-order continuous-time LTI systems using the Al-Alaoui and Tustin discretization methods. New, graphical, and analytical stability/instability conditions are given for discrete-time systems obtained by means of the...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2018-01-01
|
| Series: | Complexity |
| Online Access: | http://dx.doi.org/10.1155/2018/2036809 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper provides new results on a stable discretization of commensurate fractional-order continuous-time LTI systems using the Al-Alaoui and Tustin discretization methods. New, graphical, and analytical stability/instability conditions are given for discrete-time systems obtained by means of the Al-Alaoui discretization scheme. On this basis, an analytically driven stability condition for discrete-time systems using the Tustin-based approach is presented. Finally, the stability of discrete-time systems obtained by finite-length approximation of the Al-Alaoui and Tustin operators are discussed. Simulation experiments confirm the effectiveness of the introduced stability tests. |
|---|---|
| ISSN: | 1076-2787 1099-0526 |