A predictive framework for identifying source populations of non-native marine macroalgae: Chondria tumulosa in the Pacific Ocean

The cryptogenic marine red alga Chondria tumulosa was first observed in 2016 in subtidal habitats at Manawai (Pearl and Hermes Atoll) in the Papahānaumokuākea Marine National Monument (PMNM), Hawai‘i. Without molecular or morphological matches to any known species, it was described in 2020 and decla...

Full description

Saved in:
Bibliographic Details
Main Authors: James T. Fumo, Patrick K. Nichols, Taylor Ely, Peter B. Marko, Amy L. Moran, Brian S. Powell, Taylor M. Williams, Randall K. Kosaki, Celia M. Smith, Keolohilani H. Lopes Jr., Jennifer E. Smith, Heather L. Spalding, Stacy A. Krueger-Hadfield, Karla J. McDermid, Brian B. Hauk, James Morioka, Kevin O’Brien, Barbara Kennedy, Frederik Leliaert, Mutue T. Fujii, Wendy A. Nelson, Stefano G. A. Draisma, Alison R. Sherwood
Format: Article
Language:English
Published: PeerJ Inc. 2025-06-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/19610.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850164678906347520
author James T. Fumo
Patrick K. Nichols
Taylor Ely
Peter B. Marko
Amy L. Moran
Brian S. Powell
Taylor M. Williams
Randall K. Kosaki
Celia M. Smith
Keolohilani H. Lopes Jr.
Jennifer E. Smith
Heather L. Spalding
Stacy A. Krueger-Hadfield
Karla J. McDermid
Brian B. Hauk
James Morioka
Kevin O’Brien
Barbara Kennedy
Frederik Leliaert
Mutue T. Fujii
Wendy A. Nelson
Stefano G. A. Draisma
Alison R. Sherwood
author_facet James T. Fumo
Patrick K. Nichols
Taylor Ely
Peter B. Marko
Amy L. Moran
Brian S. Powell
Taylor M. Williams
Randall K. Kosaki
Celia M. Smith
Keolohilani H. Lopes Jr.
Jennifer E. Smith
Heather L. Spalding
Stacy A. Krueger-Hadfield
Karla J. McDermid
Brian B. Hauk
James Morioka
Kevin O’Brien
Barbara Kennedy
Frederik Leliaert
Mutue T. Fujii
Wendy A. Nelson
Stefano G. A. Draisma
Alison R. Sherwood
author_sort James T. Fumo
collection DOAJ
description The cryptogenic marine red alga Chondria tumulosa was first observed in 2016 in subtidal habitats at Manawai (Pearl and Hermes Atoll) in the Papahānaumokuākea Marine National Monument (PMNM), Hawai‘i. Without molecular or morphological matches to any known species, it was described in 2020 and declared cryptogenic. This alga has substantially increased in benthic cover and has been discovered on two additional atolls in PMNM: Kuaihelani (Midway) and Hōlanikū (Kure). It exhibits several characteristics indicative of non-native origins including putative prior absence in the region, persistence in high densities over nearly a decade, apparent lack of native herbivore pressure, and strong tetrasporophytic bias. Importantly, it is negatively impacting the culturally and ecologically valuable reefs of PMNM. The geographical origin of this putative invasion is unknown, and there are no published reports of the species occurring anywhere other than PMNM. The central Pacific location of Hawai‘i allows a broad range of potential sources for the origin of C. tumulosa. Taxonomic ambiguities within the genus Chondria and challenges associated with sampling necessitate the development of a narrowed set of search locations and efficient search strategies to detect the species outside of PMNM. Attachment to floating debris is a potential introduction vector for C. tumulosa into PMNM, and an oceanographic model was used to identify the most likely source locations for this pathway between 2000 and 2015, including Japan in the western Pacific, Johnston Atoll, the Line Islands including Palmyra Atoll in the central Pacific, and Clipperton Atoll and the Galápagos Islands in the eastern Pacific. We used a recently developed and validated eDNA assay for detecting C. tumulosa from three of the regions of interest to screen for C. tumulosa with no samples yielding positive detections. We provide a framework for investigating positive eDNA field detections using in-water surveys, microscopy, and DNA barcoding. A parallel sampling effort targeting preserved specimens stored in global herbaria is also presented, which did not yield any detections. Several Chondria species remain targets for sequencing from global herbaria. Identification of the native range of C. tumulosa is a critical step that will allow for an evaluation of its evolutionary ecology and any shifts that may have occurred that facilitated its putative invasion and subsequent spread, offering insights crucial for the development of mitigation strategies to safeguard PMNM against further risk.
format Article
id doaj-art-18d4d073d2754b7fb28ec386da35d472
institution OA Journals
issn 2167-8359
language English
publishDate 2025-06-01
publisher PeerJ Inc.
record_format Article
series PeerJ
spelling doaj-art-18d4d073d2754b7fb28ec386da35d4722025-08-20T02:21:54ZengPeerJ Inc.PeerJ2167-83592025-06-0113e1961010.7717/peerj.19610A predictive framework for identifying source populations of non-native marine macroalgae: Chondria tumulosa in the Pacific OceanJames T. Fumo0Patrick K. Nichols1Taylor Ely2Peter B. Marko3Amy L. Moran4Brian S. Powell5Taylor M. Williams6Randall K. Kosaki7Celia M. Smith8Keolohilani H. Lopes Jr.9Jennifer E. Smith10Heather L. Spalding11Stacy A. Krueger-Hadfield12Karla J. McDermid13Brian B. Hauk14James Morioka15Kevin O’Brien16Barbara Kennedy17Frederik Leliaert18Mutue T. Fujii19Wendy A. Nelson20Stefano G. A. Draisma21Alison R. Sherwood22School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United StatesSchool of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United StatesSchool of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United StatesSchool of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United StatesSchool of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United StatesDepartment of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United StatesDepartment of Biology, University of Alabama—Birmingham, Birmingham, Alabama, United StatesCenter for the Exploration of Coral Reef Ecosystems (XCoRE), Bernice Pauahi Bishop Museum, Honolulu, Hawai‘i, United StatesSchool of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United StatesDepartment of Natural Resources and Environmental Management, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United StatesScripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United StatesDepartment of Biology, College of Charleston, Charleston, South Carolina, United StatesDepartment of Biology, University of Alabama—Birmingham, Birmingham, Alabama, United StatesMarine Science Department, University of Hawai‘i at Hilo, Hilo, Hawai‘i, United StatesNational Oceanic and Atmospheric Administration, Honolulu, Hawai‘i, United StatesPapahānaumokuākea Marine Debris Project, Kailua, Hawai‘i, United StatesPapahānaumokuākea Marine Debris Project, Kailua, Hawai‘i, United StatesHerbarium Pacificum, Bernice Pauahi Bishop Museum, Honolulu, Hawai‘i, United StatesMeise Botanic Garden, Meise, BelgiumBiodiversity Conservation Center, Environmental Research Institute, São Paulo, BrazilTāmaki Paenga Hira Auckland Museum, Auckland, New ZealandExcellence Center for Biodiversity of Peninsular Thailand, Prince of Songkla University, Hat Yai, ThailandSchool of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i, United StatesThe cryptogenic marine red alga Chondria tumulosa was first observed in 2016 in subtidal habitats at Manawai (Pearl and Hermes Atoll) in the Papahānaumokuākea Marine National Monument (PMNM), Hawai‘i. Without molecular or morphological matches to any known species, it was described in 2020 and declared cryptogenic. This alga has substantially increased in benthic cover and has been discovered on two additional atolls in PMNM: Kuaihelani (Midway) and Hōlanikū (Kure). It exhibits several characteristics indicative of non-native origins including putative prior absence in the region, persistence in high densities over nearly a decade, apparent lack of native herbivore pressure, and strong tetrasporophytic bias. Importantly, it is negatively impacting the culturally and ecologically valuable reefs of PMNM. The geographical origin of this putative invasion is unknown, and there are no published reports of the species occurring anywhere other than PMNM. The central Pacific location of Hawai‘i allows a broad range of potential sources for the origin of C. tumulosa. Taxonomic ambiguities within the genus Chondria and challenges associated with sampling necessitate the development of a narrowed set of search locations and efficient search strategies to detect the species outside of PMNM. Attachment to floating debris is a potential introduction vector for C. tumulosa into PMNM, and an oceanographic model was used to identify the most likely source locations for this pathway between 2000 and 2015, including Japan in the western Pacific, Johnston Atoll, the Line Islands including Palmyra Atoll in the central Pacific, and Clipperton Atoll and the Galápagos Islands in the eastern Pacific. We used a recently developed and validated eDNA assay for detecting C. tumulosa from three of the regions of interest to screen for C. tumulosa with no samples yielding positive detections. We provide a framework for investigating positive eDNA field detections using in-water surveys, microscopy, and DNA barcoding. A parallel sampling effort targeting preserved specimens stored in global herbaria is also presented, which did not yield any detections. Several Chondria species remain targets for sequencing from global herbaria. Identification of the native range of C. tumulosa is a critical step that will allow for an evaluation of its evolutionary ecology and any shifts that may have occurred that facilitated its putative invasion and subsequent spread, offering insights crucial for the development of mitigation strategies to safeguard PMNM against further risk.https://peerj.com/articles/19610.pdfDispersalCryptogenicAlgaeeDNAConnectivity modelingHerbaria
spellingShingle James T. Fumo
Patrick K. Nichols
Taylor Ely
Peter B. Marko
Amy L. Moran
Brian S. Powell
Taylor M. Williams
Randall K. Kosaki
Celia M. Smith
Keolohilani H. Lopes Jr.
Jennifer E. Smith
Heather L. Spalding
Stacy A. Krueger-Hadfield
Karla J. McDermid
Brian B. Hauk
James Morioka
Kevin O’Brien
Barbara Kennedy
Frederik Leliaert
Mutue T. Fujii
Wendy A. Nelson
Stefano G. A. Draisma
Alison R. Sherwood
A predictive framework for identifying source populations of non-native marine macroalgae: Chondria tumulosa in the Pacific Ocean
PeerJ
Dispersal
Cryptogenic
Algae
eDNA
Connectivity modeling
Herbaria
title A predictive framework for identifying source populations of non-native marine macroalgae: Chondria tumulosa in the Pacific Ocean
title_full A predictive framework for identifying source populations of non-native marine macroalgae: Chondria tumulosa in the Pacific Ocean
title_fullStr A predictive framework for identifying source populations of non-native marine macroalgae: Chondria tumulosa in the Pacific Ocean
title_full_unstemmed A predictive framework for identifying source populations of non-native marine macroalgae: Chondria tumulosa in the Pacific Ocean
title_short A predictive framework for identifying source populations of non-native marine macroalgae: Chondria tumulosa in the Pacific Ocean
title_sort predictive framework for identifying source populations of non native marine macroalgae chondria tumulosa in the pacific ocean
topic Dispersal
Cryptogenic
Algae
eDNA
Connectivity modeling
Herbaria
url https://peerj.com/articles/19610.pdf
work_keys_str_mv AT jamestfumo apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT patrickknichols apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT taylorely apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT peterbmarko apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT amylmoran apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT brianspowell apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT taylormwilliams apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT randallkkosaki apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT celiamsmith apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT keolohilanihlopesjr apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT jenniferesmith apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT heatherlspalding apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT stacyakruegerhadfield apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT karlajmcdermid apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT brianbhauk apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT jamesmorioka apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT kevinobrien apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT barbarakennedy apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT frederikleliaert apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT mutuetfujii apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT wendyanelson apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT stefanogadraisma apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT alisonrsherwood apredictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT jamestfumo predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT patrickknichols predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT taylorely predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT peterbmarko predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT amylmoran predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT brianspowell predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT taylormwilliams predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT randallkkosaki predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT celiamsmith predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT keolohilanihlopesjr predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT jenniferesmith predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT heatherlspalding predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT stacyakruegerhadfield predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT karlajmcdermid predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT brianbhauk predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT jamesmorioka predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT kevinobrien predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT barbarakennedy predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT frederikleliaert predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT mutuetfujii predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT wendyanelson predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT stefanogadraisma predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean
AT alisonrsherwood predictiveframeworkforidentifyingsourcepopulationsofnonnativemarinemacroalgaechondriatumulosainthepacificocean