Polycyclic Aromatic Hydrocarbon and CO(2–1) Emission at 50–150 pc Scales in 70 Nearby Galaxies
Combining Atacama Large Millimeter/submillimeter Array CO(2–1) mapping and JWST near- and mid-infrared imaging, we characterize the relationship between CO(2–1) and polycyclic aromatic hydrocarbon (PAH) emission at ≈100 pc resolution in 70 nearby star-forming galaxies. Leveraging a new Cycle 2 JWST...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IOP Publishing
2025-01-01
|
| Series: | The Astrophysical Journal |
| Subjects: | |
| Online Access: | https://doi.org/10.3847/1538-4357/adbd40 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Combining Atacama Large Millimeter/submillimeter Array CO(2–1) mapping and JWST near- and mid-infrared imaging, we characterize the relationship between CO(2–1) and polycyclic aromatic hydrocarbon (PAH) emission at ≈100 pc resolution in 70 nearby star-forming galaxies. Leveraging a new Cycle 2 JWST Treasury program targeting nearby galaxies, we expand the sample size by more than an order of magnitude compared to previous ≈100 pc resolution CO–PAH comparisons. In regions of galaxies where most of the gas is likely to be molecular, we find strong correlations between CO(2–1) and 3.3 μ m, 7.7 μ m, and 11.3 μ m PAH emission, estimated from JWST’s F335M, F770W, and F1130W filters. We derive power-law relations between CO(2–1) and PAH emission, with indices in the range 0.8–1.3, implying relatively weak variations in the observed CO-to-PAH ratios across our sample. We find that CO-to-PAH ratios and scaling relationships near H ii regions are similar to those in diffuse sight lines. The main difference between the two types of regions is that sight lines near H ii regions show higher intensities in all tracers. Galaxy centers show higher overall intensities and enhanced CO-to-PAH ratios compared to galaxy disks. Individual galaxies show 0.19 dex scatter in the normalization of CO at fixed I _PAH , and this normalization anticorrelates with specific star formation rate and correlates with stellar mass. We provide a prescription that accounts for galaxy-to-galaxy variations, representing our best current empirical predictor to estimate CO(2–1) intensity from PAH emission, allowing one to take advantage of JWST’s excellent sensitivity and resolution to trace cold gas. |
|---|---|
| ISSN: | 1538-4357 |