Experiment on the Breakup of Liquid Jets in Different Cross-Airflows
The experiment is conducted with a high-speed camera to investigate the breakup processes of liquid jets in uniform, shear-laden, and swirling cross-airflows. The liquid used in the test is water, the nozzle diameter is 2 mm, and the liquid-to-air momentum flux ratio q ranges from 5 to 3408.5. The r...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2019-01-01
|
| Series: | International Journal of Aerospace Engineering |
| Online Access: | http://dx.doi.org/10.1155/2019/2576568 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The experiment is conducted with a high-speed camera to investigate the breakup processes of liquid jets in uniform, shear-laden, and swirling cross-airflows. The liquid used in the test is water, the nozzle diameter is 2 mm, and the liquid-to-air momentum flux ratio q ranges from 5 to 3408.5. The results indicate that liquid jets break up to form small droplets in the uniform cross-airflow. There is an exponential relation between the broken position and q. In the shear-laden cross-airflow, the penetration depth of the jet is similar to that of the uniform case, both of which increase with the increase of q. When q and the mean Weber number are the same as the uniform case, the penetration depth of the jet increases by 25% when the velocity ratio of the upper and lower inlets is UR=5; the jet penetration depth decreases by 47.2% when the ratio of UR=0.2 and the jet breaks up quickly and the atomization effect will be better. In the swirling cross-airflow, the jet trajectory is similar to the uniform case and also satisfies the exponential property. When the swirl is weak (swirling number SN=0.49), the jet penetration depth increases compared to the uniform case; when the swirl is strong (SN=0.82), the cross-swirling airflow restrains the jet penetration depth. |
|---|---|
| ISSN: | 1687-5966 1687-5974 |