Translational and great Darboux cyclides
A surface that is the pointwise sum of circles in Euclidean space is either coplanar or contains no more than 2 circles through a general point. A surface that is the pointwise product of circles in the unit-quaternions contains either 2, 3, 4, or 5 circles through a general point. A surface in a un...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-05-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.603/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A surface that is the pointwise sum of circles in Euclidean space is either coplanar or contains no more than 2 circles through a general point. A surface that is the pointwise product of circles in the unit-quaternions contains either 2, 3, 4, or 5 circles through a general point. A surface in a unit-sphere of any dimension that contains 2 great circles through a general point contains either 4, 5, 6, or infinitely many circles through a general point. These are some corollaries from our classification of translational and great Darboux cyclides. We use the combinatorics associated to the set of low degree curves on such surfaces modulo numerical equivalence. |
---|---|
ISSN: | 1778-3569 |