Adjustment of Optimal Parameters to Control the Temperature in Different Conductors

PID controller is a closed-loop control algorithm and method using the concept of feedback that is used in many industrial processes to control the speed of DC motors, pressure control, temperature control, and so on. For this purpose, a horizontal object with different conductivities was chosen to...

Full description

Saved in:
Bibliographic Details
Main Authors: Amirhossein Oudi, Samaneh Faramarzi, Maryam Hosseini, Yegane Davoodbeygi
Format: Article
Language:fas
Published: Semnan University 2024-08-01
Series:مجله مدل سازی در مهندسی
Subjects:
Online Access:https://modelling.semnan.ac.ir/article_8354_8471bbdd970289ac95e07e32b0d1c303.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:PID controller is a closed-loop control algorithm and method using the concept of feedback that is used in many industrial processes to control the speed of DC motors, pressure control, temperature control, and so on. For this purpose, a horizontal object with different conductivities was chosen to control its temperature by changing the heat flux. Then, the studied system was written in the state space. In this method, partial differential equations were converted into ordinary differential equations with the help of finite difference, then a suitable controller was designed for temperature control. In this method, the differential equations expressing the process were written as simultaneous first order differential equations. The results show that for the stability of systems with poor thermal conductivity (small α value), should be  K_p/K_i =10. For systems with medium thermal conductivity should be K_p/K_i =0.1. For systems with strong thermal conductivity (large α value) should be K_p/K_i =1. According to the optimization done, Kd was a small value in all three cases, so the PI controller can be used in such systems.
ISSN:2008-4854
2783-2538