Orthogonal Methods for Multilayer Structures in Heat Conduction Problems

Theoretical properties of a method for construction of analytical solutions pertaining to heat conduction boundary value problem for multilayer structures have been given on the basis of the Kantarovich orthogonal method.Methodology for construction of coordinate function systems has been developed...

Full description

Saved in:
Bibliographic Details
Main Authors: V. A. Kudinov, E. V. Kotova, A. V. Eremin, A. E. Kuznetsova
Format: Article
Language:Russian
Published: Belarusian National Technical University 2013-06-01
Series:Известия высших учебных заведений и энергетических объединенний СНГ: Энергетика
Online Access:https://energy.bntu.by/jour/article/view/150
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832557216854441984
author V. A. Kudinov
E. V. Kotova
A. V. Eremin
A. E. Kuznetsova
author_facet V. A. Kudinov
E. V. Kotova
A. V. Eremin
A. E. Kuznetsova
author_sort V. A. Kudinov
collection DOAJ
description Theoretical properties of a method for construction of analytical solutions pertaining to heat conduction boundary value problem for multilayer structures have been given on the basis of the Kantarovich orthogonal method.Methodology for construction of coordinate function systems has been developed that satisfy  boundary conditions in  any approximation and satisfy matching conditions at any number of contacting bodies. Analytical solution of the heat conduction problem has been obtained on the basis of temperature perturbation front introduction  and additional boundary conditions with regard to the last layer of the multilayer system. The solution makes it possible to evaluate temperature state of a structure for small and very small time values.
format Article
id doaj-art-18100d847f414e9aa6a8632b8fe424d6
institution Kabale University
issn 1029-7448
2414-0341
language Russian
publishDate 2013-06-01
publisher Belarusian National Technical University
record_format Article
series Известия высших учебных заведений и энергетических объединенний СНГ: Энергетика
spelling doaj-art-18100d847f414e9aa6a8632b8fe424d62025-02-03T05:35:43ZrusBelarusian National Technical UniversityИзвестия высших учебных заведений и энергетических объединенний СНГ: Энергетика1029-74482414-03412013-06-01034459144Orthogonal Methods for Multilayer Structures in Heat Conduction ProblemsV. A. Kudinov0E. V. Kotova1A. V. Eremin2A. E. Kuznetsova3Samara State Technical UniversitySamara State Technical UniversitySamara State Technical UniversitySamara State Technical UniversityTheoretical properties of a method for construction of analytical solutions pertaining to heat conduction boundary value problem for multilayer structures have been given on the basis of the Kantarovich orthogonal method.Methodology for construction of coordinate function systems has been developed that satisfy  boundary conditions in  any approximation and satisfy matching conditions at any number of contacting bodies. Analytical solution of the heat conduction problem has been obtained on the basis of temperature perturbation front introduction  and additional boundary conditions with regard to the last layer of the multilayer system. The solution makes it possible to evaluate temperature state of a structure for small and very small time values.https://energy.bntu.by/jour/article/view/150
spellingShingle V. A. Kudinov
E. V. Kotova
A. V. Eremin
A. E. Kuznetsova
Orthogonal Methods for Multilayer Structures in Heat Conduction Problems
Известия высших учебных заведений и энергетических объединенний СНГ: Энергетика
title Orthogonal Methods for Multilayer Structures in Heat Conduction Problems
title_full Orthogonal Methods for Multilayer Structures in Heat Conduction Problems
title_fullStr Orthogonal Methods for Multilayer Structures in Heat Conduction Problems
title_full_unstemmed Orthogonal Methods for Multilayer Structures in Heat Conduction Problems
title_short Orthogonal Methods for Multilayer Structures in Heat Conduction Problems
title_sort orthogonal methods for multilayer structures in heat conduction problems
url https://energy.bntu.by/jour/article/view/150
work_keys_str_mv AT vakudinov orthogonalmethodsformultilayerstructuresinheatconductionproblems
AT evkotova orthogonalmethodsformultilayerstructuresinheatconductionproblems
AT averemin orthogonalmethodsformultilayerstructuresinheatconductionproblems
AT aekuznetsova orthogonalmethodsformultilayerstructuresinheatconductionproblems