Characterizing the Real-Time Communication Performance of Virtual PLC in Industrial Edge Platform

The integration of virtual programmable logic controllers (vPLCs) into industrial automation systems introduces the potential for enhanced maintainability and scalability through container-based automation. Unlike traditional hardware-based PLCs, vPLCs operate within edge computing environments, lev...

Full description

Saved in:
Bibliographic Details
Main Authors: Massimiliano Gaffurini, Dennis Brandao, Stefano Rinaldi, Alessandra Flammini, Emiliano Sisinni, Paolo Ferrari
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Open Journal of Instrumentation and Measurement
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10963754/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849713198278639616
author Massimiliano Gaffurini
Dennis Brandao
Stefano Rinaldi
Alessandra Flammini
Emiliano Sisinni
Paolo Ferrari
author_facet Massimiliano Gaffurini
Dennis Brandao
Stefano Rinaldi
Alessandra Flammini
Emiliano Sisinni
Paolo Ferrari
author_sort Massimiliano Gaffurini
collection DOAJ
description The integration of virtual programmable logic controllers (vPLCs) into industrial automation systems introduces the potential for enhanced maintainability and scalability through container-based automation. Unlike traditional hardware-based PLCs, vPLCs operate within edge computing environments, leveraging lightweight virtualization to provide flexibility and support modern microservices architectures. However, the open question is: can vPLCs meet the stringent real-time performance requirements of industrial control applications, particularly in communication with sensors and actuators? This article objective is to fill this gap. Differently from other works in the literature, the performance of the real-time data exchange between vPLCs and sensors/actuators is evaluated. In particular, this article presents and describes a methodology designed for comparing real PLC and vPLC in real-time industrial automation scenarios. The methodology includes the definition of specific performance metrics, the design of a standardized experimental setup to characterize both device real-time performance and uncertainty sources, and the development of analytical models to support simulations and digital twin applications. The proposed method of comparison is demonstrated in a reference use case, including real-time Ethernet connectivity; results lead to: 1) important conclusions about methodology effectiveness and 2) the analytical model of the considered use case. In detail, the analysis indicates that vPLCs exhibit approximately 50% higher jitter, suggesting a minimum recommended PROFINET cycle time of 2 ms for optimal performance. The findings contribute to the broader understanding of vPLC capabilities in industrial automation, offering practical insights for industries aiming to transition to modern, containerized control systems without compromising real-time communication performance.
format Article
id doaj-art-17fdb4c3e89f4c4280ea7613be03f3f1
institution DOAJ
issn 2768-7236
language English
publishDate 2025-01-01
publisher IEEE
record_format Article
series IEEE Open Journal of Instrumentation and Measurement
spelling doaj-art-17fdb4c3e89f4c4280ea7613be03f3f12025-08-20T03:14:01ZengIEEEIEEE Open Journal of Instrumentation and Measurement2768-72362025-01-01411110.1109/OJIM.2025.355957310963754Characterizing the Real-Time Communication Performance of Virtual PLC in Industrial Edge PlatformMassimiliano Gaffurini0https://orcid.org/0009-0000-1656-6824Dennis Brandao1https://orcid.org/0000-0003-1558-0581Stefano Rinaldi2https://orcid.org/0000-0001-7300-1053Alessandra Flammini3https://orcid.org/0000-0002-2046-0720Emiliano Sisinni4https://orcid.org/0000-0001-5012-443XPaolo Ferrari5https://orcid.org/0000-0002-6349-4410University of Brescia Department of Information Engineering, Universita degli Studi di Brescia, Brescia, ItalyUniversity of Brescia Department of Information Engineering, Universita degli Studi di Brescia, Brescia, ItalyUniversity of Brescia Department of Information Engineering, Universita degli Studi di Brescia, Brescia, ItalyUniversity of Brescia Department of Information Engineering, Universita degli Studi di Brescia, Brescia, ItalyUniversity of Brescia Department of Information Engineering, Universita degli Studi di Brescia, Brescia, ItalyUniversity of Brescia Department of Information Engineering, Universita degli Studi di Brescia, Brescia, ItalyThe integration of virtual programmable logic controllers (vPLCs) into industrial automation systems introduces the potential for enhanced maintainability and scalability through container-based automation. Unlike traditional hardware-based PLCs, vPLCs operate within edge computing environments, leveraging lightweight virtualization to provide flexibility and support modern microservices architectures. However, the open question is: can vPLCs meet the stringent real-time performance requirements of industrial control applications, particularly in communication with sensors and actuators? This article objective is to fill this gap. Differently from other works in the literature, the performance of the real-time data exchange between vPLCs and sensors/actuators is evaluated. In particular, this article presents and describes a methodology designed for comparing real PLC and vPLC in real-time industrial automation scenarios. The methodology includes the definition of specific performance metrics, the design of a standardized experimental setup to characterize both device real-time performance and uncertainty sources, and the development of analytical models to support simulations and digital twin applications. The proposed method of comparison is demonstrated in a reference use case, including real-time Ethernet connectivity; results lead to: 1) important conclusions about methodology effectiveness and 2) the analytical model of the considered use case. In detail, the analysis indicates that vPLCs exhibit approximately 50% higher jitter, suggesting a minimum recommended PROFINET cycle time of 2 ms for optimal performance. The findings contribute to the broader understanding of vPLC capabilities in industrial automation, offering practical insights for industries aiming to transition to modern, containerized control systems without compromising real-time communication performance.https://ieeexplore.ieee.org/document/10963754/Containeredge computingPROFINETprogrammable logic controller (PLC)virtual PLC (vPLC)
spellingShingle Massimiliano Gaffurini
Dennis Brandao
Stefano Rinaldi
Alessandra Flammini
Emiliano Sisinni
Paolo Ferrari
Characterizing the Real-Time Communication Performance of Virtual PLC in Industrial Edge Platform
IEEE Open Journal of Instrumentation and Measurement
Container
edge computing
PROFINET
programmable logic controller (PLC)
virtual PLC (vPLC)
title Characterizing the Real-Time Communication Performance of Virtual PLC in Industrial Edge Platform
title_full Characterizing the Real-Time Communication Performance of Virtual PLC in Industrial Edge Platform
title_fullStr Characterizing the Real-Time Communication Performance of Virtual PLC in Industrial Edge Platform
title_full_unstemmed Characterizing the Real-Time Communication Performance of Virtual PLC in Industrial Edge Platform
title_short Characterizing the Real-Time Communication Performance of Virtual PLC in Industrial Edge Platform
title_sort characterizing the real time communication performance of virtual plc in industrial edge platform
topic Container
edge computing
PROFINET
programmable logic controller (PLC)
virtual PLC (vPLC)
url https://ieeexplore.ieee.org/document/10963754/
work_keys_str_mv AT massimilianogaffurini characterizingtherealtimecommunicationperformanceofvirtualplcinindustrialedgeplatform
AT dennisbrandao characterizingtherealtimecommunicationperformanceofvirtualplcinindustrialedgeplatform
AT stefanorinaldi characterizingtherealtimecommunicationperformanceofvirtualplcinindustrialedgeplatform
AT alessandraflammini characterizingtherealtimecommunicationperformanceofvirtualplcinindustrialedgeplatform
AT emilianosisinni characterizingtherealtimecommunicationperformanceofvirtualplcinindustrialedgeplatform
AT paoloferrari characterizingtherealtimecommunicationperformanceofvirtualplcinindustrialedgeplatform