Two-dimensional cooling without repump laser beams through ion motional heating

Abstract Laser cooling typically requires one or more repump lasers to clear dark states, which complicates experimental setups, especially for systems with multiple repumping frequencies. Here, we demonstrate cooling of Be+ ions using a single laser beam, enabled by micromotion-induced one-dimensio...

Full description

Saved in:
Bibliographic Details
Main Authors: Yue Xiao, Yongxu Peng, Linfeng Chen, Chunhui Li, Zongao Song, Xin Wang, Tao Wang, Yurun Xie, Bin Zhao, Tiangang Yang
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Communications Physics
Online Access:https://doi.org/10.1038/s42005-024-01920-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Laser cooling typically requires one or more repump lasers to clear dark states, which complicates experimental setups, especially for systems with multiple repumping frequencies. Here, we demonstrate cooling of Be+ ions using a single laser beam, enabled by micromotion-induced one-dimensional heating. By manipulating the displacement of Be+ ions from the trap’s nodal line, we precisely control the ion micromotion velocity, eliminating the necessity of a 1.25 GHz offset repump laser while keeping ions cold in the direction perpendicular to the micromotion. We use two equivalent schemes, cooling laser detuning and ion trajectory imaging to measure the speed of the Be+ ions, with results accurately reproduced by molecular dynamics simulations based on a machine learned time-dependent electric field inside the trap. This work provides a robust method to control micromotion velocity of ions and demonstrates the potential of micromotion-assisted laser cooling to simplify setups for systems requiring multiple repumping frequencies.
ISSN:2399-3650