Measuring quantum relative entropy with finite-size effect

We study the estimation of relative entropy $D(\rho\|\sigma)$ when $\sigma$ is known. We show that the Cramér-Rao type bound equals the relative varentropy. Our estimator attains the Cramér-Rao type bound when the dimension $d$ is fixed. It also achieves the sample complexity $O(d^2)$ when the dimen...

Full description

Saved in:
Bibliographic Details
Main Author: Masahito Hayashi
Format: Article
Language:English
Published: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften 2025-05-01
Series:Quantum
Online Access:https://quantum-journal.org/papers/q-2025-05-05-1725/pdf/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849722746594918400
author Masahito Hayashi
author_facet Masahito Hayashi
author_sort Masahito Hayashi
collection DOAJ
description We study the estimation of relative entropy $D(\rho\|\sigma)$ when $\sigma$ is known. We show that the Cramér-Rao type bound equals the relative varentropy. Our estimator attains the Cramér-Rao type bound when the dimension $d$ is fixed. It also achieves the sample complexity $O(d^2)$ when the dimension $d$ increases. This sample complexity is optimal when $\sigma$ is the completely mixed state. Also, it has time complexity $O(d^6 polylog~d)$. Our proposed estimator unifiedly works under both settings.
format Article
id doaj-art-17d7615d4f0d435589ffd88cebc5baaf
institution DOAJ
issn 2521-327X
language English
publishDate 2025-05-01
publisher Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
record_format Article
series Quantum
spelling doaj-art-17d7615d4f0d435589ffd88cebc5baaf2025-08-20T03:11:14ZengVerein zur Förderung des Open Access Publizierens in den QuantenwissenschaftenQuantum2521-327X2025-05-019172510.22331/q-2025-05-05-172510.22331/q-2025-05-05-1725Measuring quantum relative entropy with finite-size effectMasahito HayashiWe study the estimation of relative entropy $D(\rho\|\sigma)$ when $\sigma$ is known. We show that the Cramér-Rao type bound equals the relative varentropy. Our estimator attains the Cramér-Rao type bound when the dimension $d$ is fixed. It also achieves the sample complexity $O(d^2)$ when the dimension $d$ increases. This sample complexity is optimal when $\sigma$ is the completely mixed state. Also, it has time complexity $O(d^6 polylog~d)$. Our proposed estimator unifiedly works under both settings.https://quantum-journal.org/papers/q-2025-05-05-1725/pdf/
spellingShingle Masahito Hayashi
Measuring quantum relative entropy with finite-size effect
Quantum
title Measuring quantum relative entropy with finite-size effect
title_full Measuring quantum relative entropy with finite-size effect
title_fullStr Measuring quantum relative entropy with finite-size effect
title_full_unstemmed Measuring quantum relative entropy with finite-size effect
title_short Measuring quantum relative entropy with finite-size effect
title_sort measuring quantum relative entropy with finite size effect
url https://quantum-journal.org/papers/q-2025-05-05-1725/pdf/
work_keys_str_mv AT masahitohayashi measuringquantumrelativeentropywithfinitesizeeffect